Document Type : Original Research Article

Authors

Department of Chemical Sciences, Faculty of Science, Adekunle Ajasin University, Akungba-Akoko, Nigeria

Abstract

The micellization of sodium dodecyl sulphate (SDS) with promethazine hydrochloride (PMZ) in water/electrolyte environment was investigated using the conductivity measuring technique. In aqueous solutions of water, sodium chloride (NaCl), potassium chloride (KCl), and ammonium chloride (NH4Cl) at various concentrations and temperatures, a number of physico-chemical parameters, including the critical micelle concentration (CMC), fraction of bound counter ions ( ), and thermodynamic properties ( 𝑚, , , and( m), were determined for the SDS/PMZ mixture. The findings demonstrated that the CMC values decreased in the presence of PMZ and continued to decline monolitically in the electrolytic media (NaCl, KCl, and NH4Cl), with the order being CMCNaCl > CMCKCl > CMCNH4Cl. The SDS/PMZ mixture's CMC values changed with temperature. The negative values of 𝑚 suggested that a spontaneous aggregation event existed in the SDS/PMZ system. The values of  and  showed that the PMZ molecule interacted with SDS via hydrogen bonds, ion-dipoles, and hydrophobic interactions. In addition, the system's standard molar heat capacity ( m) was assessed and established with the required reasons. These results might offer a solid scientific basis for the continued use of this model as medication delivery systems.

Graphical Abstract

Promethazine Hydrochloride Influence on the Micellization and the Surface Properties of Sodium Dodecyl Sulfate in Aqueous Solutions Containing Electrolytes at Various Temperatures

Keywords

Main Subjects

  1. Mehta SK, Bhasin KK, Kumar A, Dham S. Micellar behavior of dodecyldimethylethyl ammonium bromide and dodecyltrimethylammonium chloride in aqueous media in the presence of diclofenac sodium. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2006 Apr 20; 278(1-3):17-25.

https://doi.org/10.1016/j.colsurfa.2005.11.071

  1. 2. He S, Liu X, Yan P, Wang A, Su J, Su X. Preparation of gemini surfactant/graphene oxide composites and their superior performance for Congo red adsorption. RSC Adv. 2019; 9(9):4908-16.

https://doi.org/10.1039/C8RA10025J

  1. Kumar D, Rub MA. Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactants. J. Mol. Liq. 2018 Jan 1; 250:329-34.

https://doi.org/10.1016/j.molliq.2017.11.172

  1. Kumar D, Rub MA. Catalytic role of 16‐s‐16 micelles on condensation reaction of ninhydrin and metal‐dipeptide complex. J. Phys. Org. Chem. 2019 Apr; 32(4):e3918.

https://doi.org/10.1002/poc.3918

  1. Bhardwaj V, Bhardwaj T, Sharma K, Gupta A, Chauhan S, Cameotra SS, Sharma S, Gupta R, Sharma P. Drug–surfactant interaction: thermo-acoustic investigation of sodium dodecyl sulfate and antimicrobial drug (levofloxacin) for potential pharmaceutical application. RSC Adv. 2014; 4(47):24935-43.

https://doi.org/10.1039/C4RA02177K

  1. Banipal PK, Sharma J, Banipal TS. Multi-technique approach to explore the mixed micellization behavior of promazine hydrochloride drug and cetyltrimethylammonium bromide surfactant in aqueous glycine, glycylglycine (dipeptide) and glycylglycylglycine (tripeptide) solutions. J. Disp. Sci. and Tech. 2022 Jun 11:1-4.

https://doi.org/10.1080/01932691.2022.2088555

  1. Ahmed MF, Molla MR, Saha M, Shahriar I, Rahman MS, Halim MA, Rub MA, Hoque MA, Asiri AM. Aggregation behavior of cetyldimethylethylammonium bromide under the influence of bovine serum albumin in aqueous/electrolyte solutions at various temperatures and compositions: conductivity and molecular dynamics study. RSC Adv. 2019; 9(12):6556-67.

https://doi.org/10.1039/C9RA00070D

  1. Amin MR, Alissa SA, Molla MR, Rub MA, Wabaidur SM, Hoque MA, Kabir SE. Influence of the effect of different electrolytes on the interaction of promethazine hydrochloride drug with tetradecyltrimethylammonium bromide at different temperatures. J. Phys. Org. Chem. 2020 Jul; 33(7):e4057.

https://doi.org/10.1002/poc.4057

  1. Caetano W, Tabak M. Interaction of chlorpromazine and trifluoperazine with anionic sodium dodecyl sulfate (SDS) micelles: electronic absorption and fluorescence studies. J. Colloid Interface Sci. 2000 May 1; 225(1):69-81.

https://doi.org/10.1006/jcis.2000.6720

  1. Rangel-Yagui CD, Pessoa Jr A, Tavares LC. Micellar solubilization of drugs. J. Pharm. Sci. 2005 Jul 8; 8(2):147-63.
  2. Rangel-Yagui CD, Pessoa Jr A, Tavares LC. Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 2005 Jul 8; 8(2):147-63.
  3. Caetano W, Tabak M. Interaction of chlorpromazine and trifluoperazine with anionic sodium dodecyl sulfate (SDS) micelles: electronic absorption and fluorescence studies. J. Colloid Interface Sci. 2000 May 1; 225(1):69-81.

https://doi.org/10.1006/jcis.2000.6720

  1. Yushmanov VE, Perussi JR, Imasato H, Ruggiero AC, Tabak M. Ionization and binding equilibria of papaverine in ionic micelles studied by 1H NMR and optical absorption spectroscopy. Biophys. Chem. 1994 Oct 1; 52(2):157-63.

https://doi.org/10.1016/0301-4622(94)00092-1

  1. Srivastava A, Thapa U, Saha M, Jalees M. Aggregation behaviour of tetracaine hydrochloride with Gemini surfactants and the formation of silver nanoparticles using drug-Gemini surfactants mixture. J. of Mol. Liq. 2019 Feb 15; 276:399-408.

https://doi.org/10.1016/j.molliq.2018.12.006

  1. Kumar D, Azum N, Rub MA, Asiri AM. Aggregation behavior of sodium salt of ibuprofen with conventional and gemini surfactant. J. Mol. Liq. 2018 Jul 15; 262:86-96.

https://doi.org/10.1016/j.molliq.2018.04.053

  1. Abdul Rub M, Azum N, Asiri AM. Binary mixtures of sodium salt of ibuprofen and selected bile salts: interface, micellar, thermodynamic, and spectroscopic study. J. Chem. Eng. Data. 2017 Oct 12; 62(10):3216-28.

https://doi.org/10.1021/acs.jced.7b00298

  1. Rub MA, Azum N, Khan F, Asiri AM. Surface, micellar, and thermodynamic properties of antidepressant drug nortriptyline hydrochloride with TX‐114 in aqueous/urea solutions. J. Phys. Org. Chem. 2017 Oct; 30(10):e3676.

https://doi.org/10.1002/poc.3676

  1. Khan AB, Ali M, Dohare N, Singh P, Patel R. Micellization behavior of the amphiphilic drug promethazine hydrochloride with 1-decyl-3-methylimidazolium chloride and its thermodynamic characteristics. J. Mol. Liq. 2014 Oct 1; 198:341-6. https://doi.org/10.1016/j.molliq.2014.07.021
  2. Abdul Rub M, Azum N, Asiri AM. Binary mixtures of sodium salt of ibuprofen and selected bile salts: interface, micellar, thermodynamic, and spectroscopic study. J. Chem. Eng. 2017 Oct 12; 62(10):3216-28.

https://doi.org/10.1021/acs.jced.7b00298

  1. Kumar D, Rub MA, Azum N, Asiri AM. Mixed micellization study of ibuprofen (sodium salt) and cationic surfactant (conventional as well as gemini). J Phys Org Chem. 2018 Jan; 31(1):e3730.

https://doi.org/10.1002/poc.3730

  1. Mahbub S, Akter S, Akter P, Hoque MA, Rub MA, Kumar D, Alghamdi YG, Asiri AM, Džudžević-Čančar H. Effects of temperature and polyols on the ciprofloxacin hydrochloride-mediated micellization of sodium dodecyl sulfate. RSC Adv. 2020; 10(25):14531-41.

https://doi.org/10.1039/D0RA00213E

  1. Karukstis KK, Savin DA, Loftus CT, D'Angelo ND. Spectroscopic studies of the interaction of methyl orange with cationic alkyltrimethylammonium bromide surfactants. J. Colloid Interface Sci. 1998 Jul 1; 203(1):157-63.

https://doi.org/10.1006/jcis.1998.5494

  1. Bračko S, Špan J. Conductometric investigation of dye–surfactant ion pair formation in aqueous solution. Dyes Pigm. 2000 May 1; 45(2):97-102.

https://doi.org/10.1016/S0143-7208(00)00016-4

  1. Simončič B, Špan J. A study of dye-surfactant interactions. Part 1. Effect of chemical structure of acid dyes and surfactants on the complex formation. Dyes Pigm. 1998 Jan 1; 36(1):1-4.

https://doi.org/10.1016/S0143-7208(97)00001-6

  1. Ali A, Uzair S, Farooq U. Interactions of cationic, anionic and nonionic surfactants with cresol red dye in aqueous solutions: conductometric, tensiometric, and spectroscopic studies. Tenside Surfactants Det. 2017 Jul 14; 54(4):342-52. https://doi.org/10.3139/113.110509
  2. Akhtar F, Hoque MA, Khan MA. Interaction of cefadroxyl monohydrate with hexadecyltrimethyl ammonium bromide and sodium dodecyl sulfate. J. Chem. Thermo. 2008 Jul 1; 40(7):1082-6.
  3. Hoque MA, Hossain MD, Khan MA. Interaction of cephalosporin drugs with dodecyltrimethylammonium bromide. J. Chem. Thermo. 2013 Aug 1; 63:135-41. https://doi.org/10.1016/j.jct.2013.04.007
  4. Molla MR, Rub MA, Ahmed A, Hoque MA. Interaction between tetradecyltrimethylammonium bromide and benzyldimethylhexadecylammonium chloride in aqueous/urea solution at various temperatures: An experimental and theoretical investigation. J. Mol. Liq. 2017 Jul 1; 238:62-70. https://doi.org/10.1016/j.molliq.2017.04.061
  5. Mahjoub HF, Aouissi Z, Othman T. Influence of carboxymethylcellulose (NaCMC) on the aggregation and micellization behaviors in aqueous cethylpyridinium chloride solutions: Thermodynamic study and effect of polymer concentration. J. Mol. Liq. 2018 Sep 1; 265:473-86.

https://doi.org/10.1016/j.molliq.2018.06.037 

  1. Pal A, Yadav A. Mixed micellization of a trisubstituted surface active ionic liquid 1-dodecyl-2, 3-dimethylimidazolium chloride [C12bmim][Cl] with an amphiphilic drug amitriptyline hydrochloride AMT: a detailed insights from conductance and surface tension measurements. J. Mol. Liq. 2019 Apr 1; 279:43-50.

https://doi.org/10.1016/j.molliq.2019.01.107

  1. Rojas M, Miskolczy Z, Biczók L, Pavez P. Effect of amino acid addition on the micelle formation of the surface‐active ionic liquid 1‐tetradecyl‐3‐methylimidazolium bromide in aqueous solution. J. Phys. Org. Chem. 2019 Jan; 32(1):e3814.

https://doi.org/10.1002/poc.3814

  1. Chakraborty T, Chakraborty I, Ghosh S. Sodium carboxymethylcellulose− CTAB interaction: a detailed thermodynamic study of polymer− surfactant interaction with opposite charges. Langmuir. 2006 Nov 21; 22(24):9905-13.

https://doi.org/10.1021/la0621214

  1. Amin MR, Mahbub S, Hidayathulla S, Alam MM, Hoque MA, Rub MA. An estimation of the effect of mono/poly-hydroxy organic compounds on the interaction of tetradecyltrimethylammonium bromide with levofloxacin hemihydrate antibiotic drug. J. Mol. Liq. 2018 Nov 1; 269:417-25.

https://doi.org/10.1016/j.molliq.2018.08.043

  1. Amin R, Molla MR, Rana S, Hoque MA, Rub MA, Kabir M, Asiri AM. Influence of electrolytes/urea on the interaction of tetradecyltrimethylammonium bromide and antibiotic levofloxacin hemihydrate drug. J. Phy. Chem. Liq. 2019 Nov 2; 57(6):703-19.

https://doi.org/10.1080/00319104.2018.1519565

  1. Dutkiewicz E, Jakubowska A. Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles. Colloid Polym. Sci. 2002 Nov; 280(11):1009-14.

https://doi.org/10.1007/s00396-002-0723-y

  1. Suzuki H. Studies of the Effect of ethanol and sodium chloride on the micellization of sodium dodecyl sulfate by gel filtration. Bull. Chem. Soc. Jpn. 1976 Jun; 49(6):1470-4.

https://doi.org/10.1246/bcsj.49.1470

  1. Khan F, Rub MA, Azum N, Kumar D, Asiri AM. Interaction of an amphiphilic drug and sodium bis (2-ethylhexyl) sulfosuccinate at low concentrations in the absence and presence of sodium chloride. J. Sol. Chem. 2015 Sep; 44:1937-61.

https://doi.org/10.1007/s10953-015-0386-1

  1. Ramachandran K, Kalpana D, Sathishkumar Y, Lee YS, Ravichandran K. A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection. J. Ind. Eng. Chem. 2016 Mar 25; 35:29-35.

https://doi.org/10.1016/j.jiec.2015.10.033

  1. Raj Kumar T, Gnana Kumar G, Manthiram A. Biomass‐derived 3D carbon aerogel with carbon shell‐confined binary metallic nanoparticles in CNTs as an efficient electrocatalyst for microfluidic direct ethylene glycol fuel cells. Adv.Energy Mater. 2019 Apr; 9(16):1803238.

https://doi.org/10.1002/aenm.201803238

  1. Babu KJ, Raj Kumar T, Yoo DJ, Phang SM, Gnana Kumar G. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications. ACS Sustainable Chemistry & Engineering. 2018 Oct 20; 6(12):16982-9.

https://doi.org/10.1021/acssuschemeng.8b04340

  1. Para G, Jarek E, Warszynski P. The Hofmeister series effect in adsorption of cationic surfactants—theoretical description and experimental results. Adv. Colloid Interface Sci. 2006 Sep 25; 122(1-3):39-55.

https://doi.org/10.1016/j.cis.2006.06.017

  1. Benrraou M, Bales BL, Zana R. Effect of the nature of the counterion on the properties of anionic surfactants. 1. Cmc, ionization degree at the cmc and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J. Phys. Chem. B. 2003 Dec 4; 107(48):13432-40.

https://doi.org/10.1021/jp021714u

  1. Hooshyar H, Sadeghi R. Influence of sodium salts on the micellization and interfacial behavior of cationic surfactant dodecyltrimethylammonium bromide in aqueous solution. J. Chem. Eng. Data. 2015 Apr 9; 60(4):983-92.

https://doi.org/10.1021/je501058a

  1. Moreira L, Firoozabadi A. Molecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants. Langmuir. 2010 Oct 5; 26(19):15177-91.

https://doi.org/10.1021/la102536y

  1. Schelero N, Hedicke G, Linse P, Klitzing RV. Effects of counterions and co-ions on foam films stabilized by anionic dodecyl sulfate. J. Phys. Chem. B. 2010 Dec 2; 114(47):15523-9.

https://doi.org/10.1021/jp1070488

  1. Sharker KK, Nazrul Islam M, Das S. Interactions of some Hofmeister cations with sodium dodecyl Sulfate in aqueous solution. Journal of Surfactants and Detergents. 2019 Mar; 22(2):249-58.

https://doi.org/10.1002/jsde.12227

  1. Collins KD. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods. 2004 Nov 1; 34(3):300-11.

https://doi.org/10.1016/j.ymeth.2004.03.021

  1. Vlachy N, Jagoda-Cwiklik B, Vácha R, Touraud D, Jungwirth P, Kunz W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 2009 Feb 28; 146(1-2):42-7.

https://doi.org/10.1016/j.cis.2008.09.010

  1. Chattopadhyay AK, Ghaicha L, Oh SG, Shah DO. Salt effects on monolayers and their contribution to surface viscosity. J. Phys. Chem. 1992 Jul; 96(15):6509-13.

https://doi.org/10.1021/j100194a074

  1. Sristy SI, Mahbub S, Alam MM, Wabaidur SM, Rana S, Hoque MA, Rub MA. Interaction of tetradecyltrimethylammonium bromide with sodium dodecyl sulfate in aqueous/urea medium at several temperatures and compositions. J. Mol. Liq. 2019 Jun 15; 284:12-22.

https://doi.org/10.1016/j.molliq.2019.03.142

  1. Rosen MJ. Surfactants and Interfacial Phenomena, 3rd Edn. NewYork: JohnWiley and Sons.
  2. Molla MR, Rana S, Rub MA, Ahmed A, Hoque MA. Conductometric probe analysis of the effect of benzyldimethy-lhexadecylammonium chloride on the micellization behavior of dodecyltrime-thylammonium bromide in aqueous/urea solution: investigation of concentration and temperature effect. J. Surf. Deterg. 2018 Mar; 21(2):231-46.

https://doi.org/10.1002/jsde.12011

  1. Akhtar F, Hoque MA, Khan MA. Interaction of cefadroxyl monohydrate with hexadecyltrimethyl ammonium bromide and sodium dodecyl sulfate. J. Chem. Thermo. 2008 Jul 1; 40(7):1082-6.

https://doi.org/10.1016/j.jct.2008.03.001

  1. Lumry R, Rajender S. Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous properly of water. Biopolymers. 1970 Oct; 9(10):1125-227.

https://doi.org/10.1002/bip.1970.360091002

  1. Sugihara G, Hisatomi M. Enthalpy–entropy compensation phenomenon observed for different surfactants in aqueous solution. J. Colloid Interface Sci. 1999 Nov 1; 219(1):31-6.

https://doi.org/10.1006/jcis.1999.6378

  1. Rub MA, Azum N, Asiri AM. Self-association behavior of an amphiphilic drug nortriptyline hydrochloride under the influence of inorganic salts. Russ. J. Phys. Chem. B. 2016 Nov; 10:1007-13.

https://doi.org/10.1134/S1990793116060257

  1. Erdainç N, Göktürk S, Tunçay M. Interaction of epirubicin HCl with surfactants: Effect of NaCl and glucose. J. Pharm Sci. 2004 Jun 1; 93(6):1566-76.

https://doi.org/10.1002/jps.20056

  1. H. Kumar, N. Sharma, A. Katal, Aggregation behavior of cationic (tetradecyltrimethy-lammonium bromide) and anionic (sodium dodecyl sulfate) surfactant in aqueous solution of synthesized ionic liquid [1-pentyl-3-methylliimidazolium bromide] – conductivity and FT-IR spectroscopic studies, J. Mol. Liq.

http://dx.doi.org/10.1016/j.molliq.2018.03.028

  1. Kim HU, Lim KH. A model on the temperature dependence of critical micelle concentration. Colloids Surf A: Phy. Chem. Engn. Aspt. 2004 Mar 18; 235(1-3):121-8.

https://doi.org/10.1016/j.colsurfa.2003.12.019

  1. Beesley AH, Evans DF, Laughlin RG. Evidence for the essential role of hydrogen bonding in promoting amphiphilic self-assembly: measurements in 3-methylsydnone. J. Phys. Chem. 1988 Feb; 92(3):791-3.

https://doi.org/10.1021/j100314a039

  1. Rahman M, Khan MA, Abdul Rub M, Hoque MA, Asiri AM. Investigation of the effect of various additives on the clouding behavior and thermodynamics of polyoxyethylene (20) sorbitan monooleate in absence and presence of ceftriaxone sodium trihydrate drug. J. Chem. Eng. Data. 2017 Apr 4; 62(4):1464-74.

https://doi.org/10.1021/acs.jced.6b01027

  1. Rahman M, Hoque MA, Khan MA, Rub MA, Asiri AM. Effect of different additives on the phase separation behavior and thermodynamics of p-tert-alkylphenoxy poly (oxyethylene) ether in absence and presence of drug. Chin. J. Chem. Engn. 2018 May 1; 26(5):1110-8.

https://doi.org/10.1016/j.cjche.2017.10.011

  1. Islam MN, Kato T. Thermodynamic study on surface adsorption and micelle formation of poly (ethylene glycol) mono-n-tetradecyl ethers. Langmuir. 2003 Sep 2; 19(18):7201-5.

https://doi.org/10.1021/la030112e

  1. Khan F, Rub MA, Azum N, Kumar D, Asiri AM. Interaction of an amphiphilic drug and sodium bis (2-ethylhexyl) sulfosuccinate at low concentrations in the absence and presence of sodium chloride. J. Sol. Chem. 2015 Sep; 44:1937-61.

https://doi.org/10.1007/s10953-015-0386-1

  1. Kumar D, Rub MA. Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures. J. Phys. Org. Chem. 2016 Aug; 29(8):394-405.

https://doi.org/10.1002/poc.3546

  1. Hoque MA, Mahbub S, Rub MA, Rana S, Khan MA. Experimental and theoretical investigation of micellization behavior of sodium dodecyl sulfate with cetyltrimethylammonium bromide in aqueous/urea solution at various temperatures. Korean J. Chem. Eng. 2018 Nov; 35:2269-82.

https://doi.org/10.1007/s11814-018-0120-y

  1. Kumar D, Hidayathulla S, Rub MA. Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: Effect of temperature and salt. J Mol Liq. 2018 Dec 1; 271:254-64.

https://doi.org/10.1016/j.molliq.2018.08.147

  1. Ahsan SM, Molla MR, Rahman MS, Hossain MF, Wabaidur SM, Hoque MA, Rub MA, Khan MA. Investigation of the interaction of levofloxacin hemihydrate with surfactants in the occurrence of salts: Conductivity and cloud point measurement. J. Mol. Liq. 2019 Jan 15; 274:484-96.

https://doi.org/10.1016/j.molliq.2018.10.148

  1. Nusselder JJ, Engberts JB. Toward a better understanding of the driving force for micelle formation and micellar growth. J. of Colloid Interface Sci. 1992 Feb 1; 148(2):353-61.

https://doi.org/10.1016/0021-9797(92)90174-K

  1. Chen LJ, Lin SY, Huang CC. Effect of hydrophobic chain length of surfactants on enthalpy− entropy compensation of micellization. J. Phys. Chem. B. 1998 May 28; 102(22):4350-6.

https://doi.org/10.1021/jp9804345

  1. Hoque MA, Patoary MO, Rashid MM, Molla MR, Rub MA. Physico-chemical investigation of mixed micelle formation between tetradecyltrimethylammonium bromide and dodecyltrimethylammonium chloride in water and aqueous solutions of sodium chloride. J. Sol. Chem. 2017 Mar; 46:682-703.

https://doi.org/10.1007/s10953-017-0594-y

  1. Owoyomi O, Ige J, Soriyan OO. Thermodynamics of micellization of n-alkyltriphenylphosphonium bromides: a conductometric study. Chem. Sci. J. 2011 Jan 1; 25:1-3.