Document Type : Original Research Article

Authors

1 Department of Chemistry, Federal University Gashua, Yobe State, Nigeria

2 Department of Chemistry, Ahmadu Bello University, Zaria–Nigeria

10.22034/ajcb.2022.343747.1122

Abstract

Phytosterols derived from medicinal plants are well-known for their therapeutic effects in the treatment of diabetes, cardiovascular disease, cancer, and microbial infections. Strychnos innocua (a Loganiaceae family member) grows in numerous African countries and is widely used for medicinal purposes. This plant's (root bark) ethyl acetate extract was subjected to chromatographic separation, resulting in the isolation of Campesterol (1) and β-Sitosterol (2). Their structures were verified using mass spectrometry, nuclear magnetic resonance (1D and 2D NMR), and in comparison to published data. This is a novel report of phytosterol compounds which were isolated from S. innocua root bark. The in silico investigation found that the binding affinities of Campesterol (1) with binding sites of Staphylococcus aureus pyruvate carboxylase (PDB: 3HO8) and Pseudomonas aeruginosa virulence factor regulator (PDB: 2OZ6) were -7.8 and -7.9 kcal/mol, respectively. Furthermore, the binding affinities of β-Sitosterol (2) with binding sites of S. aureus and P. aeruginosa are -7.6 and -7.7 kcal/mol, respectively, while ciprofloxacin (standard drugs) exhibited binding affinities of -6.6 and -8.7 kcal/mol. This study concluded that the S. innocua root bark has a rich presence of Campesterol and β-Sitosterol, while their molecular docking studies revealed that they have excellent interactions with S. aureus and P. aeruginosa.

Graphical Abstract

Isolation and Characterization of Two Phytosterols from Strychnos Innocua (Delile) Root ‎Bark, and In Silico Molecular Docking Studies as Antibacterial Agents

Keywords

Main Subjects

[1] S. Sasidharan, Y. Chen, D. Saravanan, K. M. Sundram, L. Y. Latha, Extraction, isolation and characterization of bioactive compounds from plants extracts. African Journal of Traditional Complementary and Alternative Medicine, 8 (2011) 1-10.
[2] I. Umaru, F. A. Badruddin, H. A. Umaru, Extraction, isolation and characterization of new compound and anti-bacterial potentials of the chemical constituents compound from Leptadenia hastata leaf extract. ChemRxiv, (2019). doi.org/10.26434/chemrxiv.9782585.v2
[3] M. Mondal, M. S. Hossain, N. Das, A. B. R. Khalipha, A. P. Sarkar, M. T. Islam, S. K. Kundu. Phytochemical screeming and evaluation of pharmacological activity of leaf methanol extract of Colocasia affinis Schott. Clinical Phytoscience, 5 (2019) 1-11. https://doi.org/10.1186/s40816-019-0100-8
[4] A. J. Uttu, M. S. Sallau, O. R. A. Iyun, H. Ibrahim. Recent Advances in Isolation and Antimicrobial Efficacy of Selected Strychnos Species: A Mini Review. Journal of Chemical Reviews. 4 (2022) 15-24. https://doi.org/10.22034/JCR.2022.314381.1129
[5] J. Choi, E. Lee, H. Lee, K. Kim, K. Ahn, B. Shim … S. Kim. Identification of campesterol from Chrysanthemum coronarium L. and its antiantiogenic activities. Phytotherapy Research, 21 (2007) 954-959. https://doi.org/10.1002/ptr.2189
[6] P. Jian, H. P. Sharma, F. Basri, B. Baraik, S. Kumari and C. Pathak,. Pharmacological profiles of ethno-medicinal plant: Plumbago zeylanica I. – A review. International Journal of Pharmaceutical Sciences Review and Research, 24 (2014)157-163.
[7] E. A. Nour, E. Abd, E. Khaled, A. E. Maher, A. S. Samir and M. E. Mostafa. Designed, synthesis, molecular docking and in silico ADMET profile of pyrano[2,3-d]pyrimidine derivatives as antimicrobial and anticancer agents. Bioorganic Chemistry, 115 (2021) 1051186. DOI: 10.1016/j.bioorg.2021.105186
[8] I. E Emmanuel, A. J. Uttu, A. Oluwaseye, S. Hassan, A. Ajala, A Semi-empirical based QSAR study of indole𝜷- Diketo acid, Diketo acid and Carboxamide Derivatives as potent HIV-1 agent Using Quantum Chemical descriptors. IOSR Journal of Applied Chemistry, 8 (2015) 12-20. DOI: 10.9790/5736-081111220
[9] C. K. Ruffo, A. Birnie, B. Tengnas, Edible wild plants of Tanzania. Regional Land Management Unit; Nairobi (2002).
[10] C. A. Orwa, K. R. Mutua, R. Jamnadass, and S. Anthony,  Agroforestree database: a tree reference and selection guide version 4.0. Retrieved from http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp. (2009)
[11] H. Ibrahim, A. J. Uttu, M. S. Sallau and O. R. A. Iyun. Gas chromatography–mass spectrometry (GC–MS) analysis of ethyl acetate root bark extract of Strychnos innocua (Delile). Beni-Suef University Journal of Basic and Applied Sciences, 10, 65 (2021) 1-8. https://doi.org/10.1186/s43088-021-00156-1
[12] O. R. A. Iyun, A. J. Uttu, M. S Sallau and H. Ibrahim, GC-MS analysis of methanol extract of Strychnos Innocua (Delile) root bark. Advanced Journal of Chemistry-Section A, 5 (2022) 104-117. DOI: 10.22034/AJCA.2022.322806.1295
[13] M. S. Sallau, A. J. Uttu, O. R. A. Iyun, H. Ibrahim, Strychnos innocua (Delile): Phytochemical and Antimicrobial Evaluations of its root bark extracts, Ad. J. Chem. B, 4 (2022) 17-28. DOI: 10.22034/ajcb.2022.323148.1104
[14] A. J. Uttu, M.S. Sallau, O.R.A. Iyun, H. Ibrahim. Coumarin and fatty alcohol from root bark of Strychnos innocua (delile): isolation, characterization and in silico molecular docking studies. Bulletin of the National Research Centre, 46 (2022) 1-12. https://doi.org/10.1186/s42269-022-00862-5
[15] S. Ejeh, A. Uzairu, G. A. Shallangwa, S. E. Abechi,. Computational techniques in designing a series of 1,3,4-trisubstituted pyrazoles as unique hepatitis C virus entry inhibitors. Chemical Revew and Letters, 4 (2021) 108-119.
[16] A. Tukur, J. D. Habila, R.G Ayo, O. R. A. Iyun. Design, synthesis, docking studies and antibiotic evaluation (in vitro) of some novel ( E )‑4 ‑(3 ‑(d iph eny lam ino )ph eny l)‑ 1‑(4‑m eth oxy phe nyl )‑2 ‑methylbut‑3‑en‑1‑one and their analogues. Bulletin of the National Research Centre, 46 (2022) 1-12. https://doi.org/10.1186/s42269-022-00745-9.
[17] W. J. Musa, S. Duengo , A. K. Kilo. Campesterol from methanol fraction of Brotowali (Tinospora crispa) stem bark. Atlantis Highlights in Chemistry and Pharmaceutical Sciences, 1 (2019) 95-97.
[18] X. P. Pham, T. T. T. Nhung, H. N. Trinh, D. M. Trung, D. T. Giang, B. D. Vu, C. V. Men. Isolation and structural characterization of compounds from blumea lacera. Pharmacognosy Journal., 13 (2021) 999-1004. DOI : 10.5530/pj.2021.13.129
[19] M. O. Aliba, I. G. Ndukwe, and H. Ibrahim. Isolation and characterization of β-Sitosterol from methanol extracts of the stem bark of large leaved rock fig (Ficus aburilifolia Mig). Journal of Applied Sciences and Environmental Management. 22 (2018) 1639-1642
[20] U. Erwin, W.R. Pusparohmana, R.D. Safitry, E. Marliana, E. Usman and I.W. Kusuma. Isolation and characterization of stigmasterol and β-sitosterol from wood bark extract of Baccaurea macrocarpa Miq. Mull. Arg. Rasayan Journal of Chemistry, 13 (2020) 2552-2558. http://dx.doi.org/10.31788/ RJC.2020.1345652
[21] P. S. Jain, S. B. Bari. Isolation of lupeol, stigmasterol and campesterol from petroleum ether extract of woody stem of Wrightia tinctoria, Asian Journal of Plant Sciences, 9 (3) (2010) 163-167.
[22] I. S. Okoro, T. A. Tor-Anyiin, J. O. Igoli, X. S. Noundou and R. W. M. Krause. Isolation and characterisation of stigmasterol and β–sitosterol from Anthocleista djalonensis A. chev. Asian Journal of Chemical Sciences, 3 (4) (2017) 1-5.
[23] N. H. Choi, J. Y. Jang, G. J. Choi, Y. H. Choi, K. S. Jang, V. T. Nguyen, J. Kim. Antifungal activity of sterols and dispsacus saponins isolated from Dipsacus asper roots against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 141 (2017) 103-108. DOI: 10.1016/j.pestbp.2016.12.006
[24] H. D. Syahputra, M. Masfria, P. A. Z. Hasibuan, I. Iksen. In silico docking studies of phytosterol compounds selected from Ficus religiosa as potential chemopreventive agent. Rasayan Journal of Chemistry, 15 (2022) 1080-1084.       DOI: 10.31788/RJC.2022.1526801.