Document Type: Review Article


1 School of Graduate Programs, Tarsus University, Tarsus, Turkey. 2 Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Tarsus, Turkey


Boron is one of the most popular materials in recent technologies due to its potential to emerge desired technological results. Many attempts have been done to understand the boron activity in crystal media or on the electronic properties of the materials to understand the mechanisms as a result of interesting molecular interplays between neighboring atoms. In the most studies, boron atoms did not have the main role in the first steps of the scientific study where it took placed. However, mostly it has become the key element and the main role player that is reported as the interesting results of the research. In this study, the background activities of the boron atom are investigated regarding its roles as dopant or substitution element.

Graphical Abstract


1. Tsagareishvili GV, Tavadze FN. Boron crystals: Preparation, structure and properties. Prog. Cryst. Growth Charact. 1988;16:341-365. 

2. Emin D. Icosahedral boron-rich solids. Phys. Today 1987;40:55-62. 

3. Gaule GK. Boron: preparation, properties, and application. Plenum Press; New York: 1965. 

4. Ulas A, Kuo KK, Gotzmer C, Ignition and combustion of boron particles in fluorine-containing environments. Combust. Flame 2001;127:1935-1957. 

5. Tian Y, Guo Z, Zhang T, Lin H, Li Z, Chen J, Deng S, Liu F. Inorganic boron-based nanostructures: Synthesis, optoelectronic properties, and prospective applications. Nanomater. 2019;9:538. 

6. Ozkendir OM, Harfouche M, Ulfat I, Kaya Ç, Celik G, Ates S, Aktas S, Baveghar H, Colak T. Boron activity in the inactive Li2MnO3 cathode material. J. Electron Spect. Related Phenom. 2019;235:23-28. 

7. Mirzaei M, Hadipour NL, Abolhassani MR. Influence of C-doping on the B-11 and N-14 quadrupole coupling constants in boron-nitride nanotubes: A DFT study. Z. Naturforsch. A 2007;62:56-60. 

8. Mirzaei M. Density functional study of defects in boron nitride nanotubes. Z. Phys. Chem. 2009;223:815-823. 

9. Mirzaei M. Calculation of chemical shielding in C-doped zigzag BN nanotubes. Monatsh. Chem. 2009;140:12751278.

10. Bagheri Z, Mirzaei M, Hadipour NL, Abolhassani MR. Density functional theory study of boron nitride

nanotubes: calculations of the N-14 and B-11 nuclear quadrupole resonance parameters. J. Comput. Theor. Nanosci. 2008;5:614-618. 

11. Singh A, Kim BK, Mackeyev Y, Rohani P, Supriya DM, Swihart MT, Krishnan S,Paras NP. Boron-nanoparticleloaded folic-acid-functionalized liposomes to achieve optimum boron concentration for boron neutron capture therapy of cancer. J. Biomed. Nanotechnol. 2019;15:1714-1723. 

12. Ozkendir OM, Gunaydin S, Mirzaei M. Electronic structure study of the LiBC3 borocarbide graphene material. Adv. J. Chem. B 2019;1:37-41.  

13. Nakagawa D, Nakamura M, Nagai S, Aizawa M. Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their responses to immunocytes. J. Mater. Sci. 2020;31:20.  

14. Marincel DM, Adnan M, Ma J, Bengio EA, Trafford MA, Kleinerman O, Kosynkin DV, Chu SH, Park C, Hocker SJ, Fay CC. Scalable purification of boron nitride nanotubes via wet thermal etching. Chem. Mater. 2019;31:15201527.

15. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011;44:1272-1276.  

16. Mirzaei M, Hadipour NL, Seif A, Giahi M. Density functional study of zigzag BN nanotubes with equivalent ends. Physica E 2008;40:3060-3063. 

17. Mirzaei M, Mirzaei M. Electronic structure of sulfur terminated zigzag boron nitride nanotube: A computational study. Solid State Sci. 2010;12:13371340.

18. Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E 2010;42:1954-1957. 

19. Ankudinov AL, Rehr JJ. Relativistic calculations of spindependent x-ray-absorption spectra. Phys. Rev. B 1997;56:R1712.  

20. Lee SH, Jeong H, Okello OF, Xiao S, Moon S, Kim DY, Kim GY, Lo JI, Peng YC, Cheng BM, Miyake H. Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing. Sci. Rep. 2019;9:1-8.   

21. Hanner AW, Gole JL. Evidence for ultrafast V–E transfer in boron oxide (BO). J. Chem. Phys.  980;73:5025-5039.

22. Burkholder TR, Andrews L. Reactions of boron atoms with molecular oxygen. Infrared spectra of BO, BO2, B2O2, B2O3, and BO− 2 in solid argon. J. Chem. Phys. 1991;95:8697-8709.  

23. Li W, Xue X. Emission reduction research and formation of hexavalent chromium in stainless steel smelting: Cooling rate and boron oxide addition effects. Process Safety Environ. Protect. 2019;122:131-143.  

24. Jiang C, Deng P, Zhang J, Gan F. Radioluminescence of Ce3+-doped B2O3–SiO2–Gd2O3–BaO glass. Phys. Lett. A 2004;323:323-328.  

25. Prasad NV, Annapurna K, Hussain NS, Buddhudu S. Spectral analysis of Ho3+: TeO2–B2O3–Li2O glass. Mater. Lett. 2003;57:2071-2080.  

26. Singh N, Singh KJ, Singh K, Singh H. Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Rad. Measur. 2006;41:84-88.  

27. Saranti A, Koutselas I, Karakassides MA. Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J. Non-Cryst. Solids 2006;352:390-398.  

28. Ozkendir OM. Determination of the atomic coordinations of the substituted light atoms in materials. J. Optoelect. Adv. Mater. 2019;21:357-360. 

29. Ozkendir OM, Ates S, Celik G, Klysubun W. Influence of boron substitution on the crystal and electronic properties of LiCrO2 battery cathode. Metal. Mater. Transact. A 2017;48:2993-2998. 

30. Fleet ME, Liu X. Boron K-edge XANES of boron oxides: tetrahedral B–O distances and near-surface alteration. Phys. Chem. Miner. 2001;28:421-427.  

31. Galatanu A, Yamamoto E, Haga Y, Ōnuki Y. Magnetic behaviour of UB4 at high temperatures. Physica B 2006;378:999-1000.  

32. Yamamoto E, Haga Y, Honma T, Inada Y, Aoki D, Hedo M, Yoshida Y, Yamagami H, Ōnuki Y. De Haas-van alphen effect and energy band structure in UB2. J. Phys. Soc. Japan 1998;67:3171-3175.  

33. Umehara I, Kurosawa Y, Nagai N, Satoh K, Kasaya M, Iga F. Magnetoresistance and de Haas-van alphen effect in UB12. J. Phys. Soc. Japan 1990;59:2320-2323.  

34. Yamamoto E, Honma T, Haga Y, Inada Y, Aoki D, Tokiwa Y, Suzuki N, Miyake K, Ōnuki Y. Magnetoresistance and de Haas-van alphen effect in UB4. J. Phys. Soc. Japan. 1999;68:3347-3351.  

35. Nishi Y, Arita Y, Terao K, Matsui T, Nagasaki T. Boron isotope effects on the thermoelectric properties of UB4 at low temperatures. J. Nucl. Mater. 2001;294:209-211.