Document Type : Original Research Article

Author

Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

10.33945/SAMI/AJCB.2019.1.6

Abstract

Density functional theory (DFT) calculations have been performed to investigate the adsorption of hydrogen (H2), nitrogen (N2) and carbon monoxide (CO) diatomic gaseous molecules at the surface of Li+ contained C16B8P8 fullerene-like nanostructure (Li+@C16B8P8). The evaluated results from the optimized structures indicated that the adsorption processes could be taken placed for the interacting gas and fullerene systems. Moreover, the electronic properties indicated that the electrical conductivities of Nano Clusters systems are changed after the adsorption processes, in which it could be a signal for detection or sensing of the existence of the gas in the environment. These changes lead to declining the HOMO/LUMO gap of the Fullerene-Like Nano Cage to its original value. As a finding of this work, it could be mentioned that the Li+@C16B8P8 fullerene-like nano cage could be considered as a suitable adsorbent for the CO, N2 and H2 gaseous. It means that the utilized Li+@C16B8P8 Fullerene-Like Nano Cage can detect the existence of gas in the environment.

Graphical Abstract

Adsorptions of Diatomic Gaseous Molecules (H2, N2 and CO) on the Surface of Li+@C16B8P8 Fullerene-Like Nanostructure: Computational Studies

Keywords

Main Subjects

[1] A. Herzog, M. Tatsutani, A HYDROGEN FUTURE?, Natural Resources Defense Council. issue paper: november (2005).

[2] K.T. Busby, Seeking Sustainability: Adopting Sustainable and Renewable Energy Sources to Create a Maintable World, INQUIRIES Journal. 4  (8) (2012) 1/1 .

[3] J. Zhou, Q. Wang, Q. Sun, P. Jena and X. S. Chen, Electric field enhanced hydrogen storage on polarizable materials substrates, .107(7) (2010) 2801–2806.

[4] B. Schreiner, H J. Reinhardt, Use of industrial gases  in petrochemistry, Hydrocarbon Processing. 87(12)(2008).

[5] S. S. Mao,   S. ShenL. Guo, Nanomaterials for renewable hydrogen production, storage and utilization , Progress in Natural Science: Materials International.  22 (6) (2012)522–534.

[6] M. U. Niemann, S. Srinivasan, A. R. Phani, A. Kumar, D.Y. Goswami, E K. Stefanakos, Nanomaterials for Hydrogen Storage Applications: A Review, Journal of Nanomaterials.2008 (2008) Article ID 950967, 9 pages.

[7] T. H. Tran and V. T. Nguyen, Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review, International Scholarly Research Notices.2014 (2014), 14 pages.

[8] C. L. Quéré, M. R. Raupach, J. G. Canadell, G. Marland et al, Trends in the sources and sinks of carbon dioxide, Nature Geoscience. 2(2009) 831 – 836.

[9] S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J.M.Kenny, B. Delley, NO and CO gas adsorption on carbon nanotubes: Experiment and theory, J. Chem. Phys.  20 (119) (2003) 10904-10910.

[10] T.C. Dinadayalane, J. Leszczynski, Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and grapheme, StructChem. 6(21) (2010)1155–1169.

[11] J.H. Guo, H. Zhang, The effect of electric field on hydrogen storage for B/C/N sheets, Struct Chem. 22 (2011)1039–1045.

[12] T.C. Dinadayalane, A. Kaczmarek, J. Lukaszewicz, J. Leszczynski, Chemisorption of Hydrogen Atoms on the Sidewalls of Armchair Single-Walled Carbon Nanotubes, J.Phys.ChemC. 20(111) (2007) 7376–7383.

[13] A. Kaczmarek, T.C. Dinadayalane, J. Lukaszewicz, J. Leszczynski, Effect of tube length on the chemisorptions of one and two hydrogen atoms on the sidewalls of (3,3) and (4,4) single-walled carbon nanotubes: A theoretical study, Int. J. Quantum Chem.12(107) (2007) 2211–2219.

[14] T.C. Dinadayalane, J. Leszczynski, Stone–Wales defects with two different orientations in (5, 5) single-walled carbon nanotubes: A theoretical study, Chem.Phys.Lett. 434 (2007) 86–91.

[15] T.C. Dinadayalene, J.S. Murray, M.C. Concha, P. Politzer, J. Leszczynski, Reactivities of sites on (5,5) Single-walled carbon nanotubes with and without a stone-wales defect, J.Chem.Theor .Comp. 6 (2010) 1351–1357.
[16] F.Fallahpour, M. Nouraliei, S.S. Gorgani, Theoretical evaluation of a double–functional heterogeneous nano–sensor, Appl. Surf. Sci. 366 (2016) 545–551.
[17] P. A. Ghamsari, M. Nouraliei, S.S. Gorgani, DFT simulation towards evaluation the molecular structure and properties of the heterogeneous C16Mg8O8 nano–cage as selective nano–sensor for H2 and N2 gases, Journal of Molecular Graphics and Modelling. 70 (2016) 163–169.
 [18] S.S. Gorgani, M. Nouraliei, S. SoleimaniGorgani, Heterogeneous C16Zn8O8 nanocluster as a selective CO/NO nanosensor: computational investigation, Int. J. Environ. Sci. Technol. 13 (2016) 1573–1580.
[19] D. Golberg, Y. Bando, Octahedral boron nitride fullerenes formed by electron beam irradiation, Appl.Phys.Lett. 73 (1998) 2441–2443.
[20] H. Omidvar, S. Goodarzi, A. Seif, A.R. Azadmehr, Influence of anodization parameters on the morphology of TiO2nanotube arrays, Super.lattice.Microst. 50 (2011) 26–39.
[21] S.K. Jain, P. Srivastava, Structural stability of nitrogen-doped ultrathin single-walled boron nanotubes: an ab initio study, Comp. Mater. Sci. 50 (2011) 3038–3042.

[22] D.C. Pestana, P.P. Power, Nature of the boron-phosphorus bond in monomeric phosphinoboranes and related compounds, J. Am. Chem. Soc. 113 (22) 8426–8437.

[23] V. Ferreira, H.W. Leite Alves, Boron phosphide as the buffer-layer for the epitaxial III-nitride growth: A theoretical study, J. Crys. Grow. 310(17) (2008) 3973–3978.

[24] H. Kawabata , H. Tachikawa, DFT Study on the Interaction of the Smallest Fullerene C20 with Lithium Ions and Atoms ,Journal of carbon research. 3(2)  (2017) 15.
 
[25]E. Cuestas , P. Serra, Localization of the valence electron of endohedrally confined hydrogen, lithium and sodium in fullerene cages, Int. J. Mod. Phys. B. 30(1650055) (2016)15 pages.

[26] C.H. Suresh, T. L. Lincy, N. Mohan, R. Rakhi, Aromatization Energy and Strain Energy of Buckminsterfullerene from Homodesmotic Reactions, J. Phys. Chem. A 119, 25(2015) 6683-6688

[27] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.E. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K. Nguyen, S. Su, T, Windus, M. Dupuis, J. Montgomery Jr, General atomic and molecular electronic structure system, J. Comp. Chem. 14(1993)1347-1363.

[28] A. E. Reed, L. A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88(1988) 899-926.
[29] S. Li, Semiconductor Physical Electronics, Second ed, Springer. USA. (2006).