Document Type : Original Research Article


1 Isfahan Pharmacy Students' Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

2 Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran



The in silico molecular docking (MD) simulations have been performed to examine the efficacy of three flavonoid ligands including chrysin, apigenin and luteolin on monoamine oxidase–A (MAO–A) enzyme inhibitions in comparison with the reference moclobemide inhibitor. All the obtained quantitative and qualitative results indicated that the flavonoid ligands could be proposed as possible inhibitors for MAO–A enzyme activity. The most important note is that the ligands could interact with the coenzyme of MAO–A, which is dominant for enzyme inhibition. The results indicated that luteolin could be proposed as the best choice of MAO–A enzyme inhibitor among the investigated ligands.

Graphical Abstract

Flavonoid Derivatives for Monoamine Oxidase–A Inhibition


  1. D. Checknita, T.J. Ekstrom, E. Comasco, K.W. Nilsson, J. Tiihonen, S. Hodgins; Associations of monoamine oxidase A gene first exon methylation with sexual abuse and current depression in women. J. Neural Transmis. 125 (2018) 1053–1064.
  2. R. Bennett, E. Blochouse, D. Leech; Effect of individual plasma components on the performance of a glucose enzyme electrode based on redox polymer mediation of a flavin adenine dinucleotide–dependent glucose dehydrogenase. Electrochim. Acta 302 (2019) 270–276.
  3. R.B. Katz, M. Toprak, S.T. Wilkinson, G. Sanacora, R. Ostroff; Concurrent use of ketamine and monoamine oxidase inhibitors in the treatment of depression: A letter to the editor. Gen. Hospital Psychiat. 54 (2018) 62– 64.
  4. G. Li, H.X. Lou; Strategies to diversify natural products for drug discovery. Med. Res. Rev. 38 (2018) 1255–1294.
  5. S. Mushtaq, B.H. Abbasi, B. Uzair, R. Abbasi; Natural products as reservoirs of novel therapeutic agents. EXCLI J. 17 (2018) 420– 451.
  6. S.H. Nile, Y.S. Keum, A.S Nile, S.S. Jalde, R.V. Patel; Antioxidant, anti‐inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J. Biochem. Mol. Toxicol. 32 (2018) e22002.
  7. X.Y. Liu, X. Lv, P. Wang, C.Z. Ai, Q.H. Zhou, M. Finel, B. Fan, Y.F. Cao, H. Tang, G.B. Ge; Inhibition of UGT1A1 by natural and synthetic flavonoids. Int. J. Biol. Macromol. 126 (2019) 653–661.
  8. M. Soleimani, M. Mirzaei, M.R. Mofid, G. Khodarahmi, S.F. Rahimpour; Lactoperoxidase inhibition by tautomeric propylthiouracils. Asian J. Grenn Chem. 4 (2020) 1–10.
  9. T. Partovi, M. Mirzaei, N.L. Hadipour; The C–H…O hydrogen bonding effects on the 17Oelectric field gradient and chemical shielding tensors in crystalline 1–methyluracil: A DFTstudy. Z. Naturforsch. A 61 (2006) 383–388.
  10. M. Mirzaei, M. Meskinfam; Computational NMR studies of silicon nanotubes. Comput. Theor. Chem. 978 (2011) 123–125.
  11. M. Mirzaei; Uracil–functionalized ultra–small (n, 0) boron nitride nanotubes (n= 3–6): Computational studies. Superlat. Microstruct. 57 (2013) 44–50.
  12. M. Mirzaei; Effects of carbon nanotubes onproperties of the fluorouracil anticancer drug: DFT studies of a CNT–fluorouracil compound. Int. J. Nano Dimens. 3 (2013) 175–179.
  13. M. Mirzaei, R.S. Ahangari; Formations of CNTmodified 5–(halogen) uracil hybrids: DFTstudies. Superlat. Microstruct. 65 (2014) 375–379
  14. E. Naderi, M. Mirzaei, L. Saghaie, G. Khodarahmi, O. Gulseren; Relaxations of methylpyridinonetautomers at the C60surfaces: DFT studies. Int. J. Nano Dimens. 8(2017) 124–131.
  15. M. Mirzaei, N.L Hadipour; A computational NQR study on the hydrogen‐bonded lattice of cytosine‐5‐acetic acid. J. Comput. Chem. 29(2008) 832–838. 16. O.M. Ozkendir, M. Mirzaei; Alkali metal chelation by 3–hydroxy–4–pyridinone. Adv. J. Chem. B 1 (2019) 10–16.
  16. K.E. Hayes, P. Batsomboon, W.C. Chen, B.D. Johnson, A. Becker, S. Eschrich, Y. Yang, A.R. Robart, G.B. Dudley, W.J. Geldenhuys, L.A. Hazlehurst; Inhibition of the FAD containing ER oxidoreductin 1 (Ero1) protein by EN–460as a strategy for treatment of multiplemyeloma. Bioorg. Med. Chem. 27 (2019) 1479–1488.
  17. P.A. Ghamsari, M. Samadizadeh, M. Mirzaei; Cytidine derivatives as inhibitors of methyltransferase enzyme. Eurasian Chem. Commun. 1 (2019) 310–317.
  18. L. Chiuccariello, R.G. Cooke, L. Miler, R.D. Levitan, G.B. Baker, S.J. Kish, N.J. Kolla, P.M. Rusjan, S. Houle, A.A. Wilson, J.H. Meyer; Monoamine oxidase–A occupancy by moclobemide and phenelzine: implications for the development of monoamine oxidase inhibitors. Int. J. Neuropsychopharmacol. 19 (2016) 1–9.
  19. H. Nazemi, M. Mirzaei, E. Jafari; Antidepressant activity of curcumin by monoamine oxidase–A inhibition. Adv. J. Chem. B 1 (2019) 3–9.
  20. H.E. Pence, A. Williams; ChemSpider: anonline chemical information resource, 2010.
  21. P.W. Rose, A. Prlić, A. Altunkaya, C. Bi, A.R. Bradley, C.H. Christie, et al.; The RCSB proteindata bank: integrative view of protein, geneand 3D structural information. Nucleic Acids Res. 45 (2017) D271–D281.
  22. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson; Autodock4 and AutoDockTools4: automateddocking with selective receptor flexiblity. J. Computat. Chem. 16 (2009) 2785–2791.
  23. Z.S. Alidoosti, M. Mirzaei; Comparativeexamination of moclobemide, tranylcypromine, phenelzine andisocarboxazid for monoamine oxidase–Ainhibition. Adv. J. Chem. B 1 (2019) 23–28.