Document Type : Original Research Article


1 Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Tarsus, Turkey

2 Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran



Chelations of neutral and one–electron positive ionic alkali metals including Lithium (Li/Li+), Sodium (Na/Na+) and Potassium (K/K+) by 3–Hydroxy–4–Pyridinone (HPO) have been investigated by the in silico density functional theory (DFT) approach. The investigated single HPO and corresponding complex systems have been first optimized and their properties have been then evaluated for the minimized energy structures. Moreover, the atomic scale quadrupole coupling constant (QCC) properties have been evaluated for further investigations of the optimized complex systems. The results indicated that the neutral/ionic states of alkali metals are important for determining the complex systems in addition to their element types. Moreover, the effects of chelations on molecular orbitals could propose complex systems for different diagnostics activities. The atomic scale properties also indicated that all atoms of complex systems are important for chelation processes. And finally, the HPO structure could be proposed for alkali metal chelation with differential diagnostic activities.

Graphical Abstract

Alkali Metal Chelation by 3–Hydroxy–4–Pyridinone


  1. A. Sigel, H. Sigel, R.K. Sigel; The alkali metal ions: their role for life. Cham, Switzerland: Springer, 2016 .
  2. J. Guon; Method and composition for testing for the presence of an alkali metal. United States Patent, USA, 1981.
  3. Y. Li, Y. Lu, P. Adelhelm, M.M. Titirici, Y.S. Hu; Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48 (2019) 4655-4687.
  4. S. Komaba, T. Akatsuka, K. Ohura, C. Suzuki, N. Yabuuchi, S. Kanazawa, K. Tsuchiya, T. Hasegawa; All-solid-state ion-selective electrodes with redox-active lithium, sodium, and potassium insertion materials as the inner solid-contact layer. Analyst 142 (2017) 3857-3866.
  5. M. Raban, R.A. Keintz, E.A. Noe;. Alkali metal chelation by diacetamide. Tetrahedron Lett. 20 (1979) 1633-1636.
  6. V.M. Nurchi, R. Cappai, K. Chand, S. Chaves, L. Gano, G. Crisponi, M. Peana, M.A. Zoroddu, M.A. Santos; New strong extrafunctionalizable tris (3, 4-HP) and bis (3, 4-HP) metal sequestering agents: synthesis, solution and in vivo metal chelation. Dalton Transact. 48 (2019) 16167-16183.
  7. J. Undurraga, K. Sim, L. Tondo, A. Gorodischer, E. Azua, K.H. Tay, D. Tan, R.J. Baldessarini; Lithium treatment for unipolar major depressive disorder: Systematic review. J. Psychopharmacol. 33 (2019) 167-176.
  8. T. Elfassy, Y. Mossavar‐Rahmani, L. Van Horn, M. Gellman, D. Sotres‐Alvarez, N. Schneiderman, M. Daviglus, J.M. Beasley, M.M. Llabre, P.A. Shaw, G. Prado; Associations of sodium and potassium with obesity measures among diverse US Hispanic/Latino adults. Obesity 26 (2018) 442-450.
  9. S.L. Jackson, M.E. Cogswell, L. Zhao, A.L. Terry, C.Y. Wang, J. Wright, S.M. Coleman King, B. Bowman, T.C. Chen, R. Merritt, C.M. Loria; Association between urinary sodium and potassium excretion and blood pressure among adults in the United States. Circulat. 137 (2018) 237-246.
  10. T. Iwahori, H. Ueshima, N. Ohgami, H. Yamashita, N. Miyagawa, K. Kondo, S. Torii, K. Yoshita, T. Shiga, T. Ohkubo, H. Arima; Effectiveness of a self-monitoring device for urinary sodium-to-potassium ratio on dietary improvement in free-living adults: a randomized controlled trial. J. Epidemiol. 28 (2018) 41-47.
  11. U.K. Udensi, P.B. Tchounwou; Potassium homeostasis, oxidative stress, and human disease. Int. J. Clin. Experiment. Physiol. 4 (2017) 111-122.
  12. A. Cilibrizzi, V. Abbate, Y.L. Chen, Y. Ma, T. Zhou, R.C. Hider; Hydroxypyridinone journey into metal chelation. Chem. Rev. 118 (2018) 7657-7701.
  13. P. Thipubon, W. Tipsuwan, C. Uthaipibull, S. Santitherakul, S. Srichairatanakool; Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice. Asian Pacific J. Tropical Biomed. 5 (2015) 932-936.
  14. K. Harismah, M. Mirzaei, R. Moradi; DFT studies of single lithium adsorption on coronene. Z. Naturforsch. A 73 (2018) 685-691.
  15. T. Partovi, M. Mirzaei, N.L. Hadipour; The C–H•••O hydrogen bonding effects on the 17O electric field gradient and chemical shielding tensors in crystalline 1-methyluracil: A DFT study. Z. Naturforsch. A 61 (2006) 383-388.
  16. M. Mirzaei, M. Meskinfam; Computational NMR studies of silicon nanotubes. Comput. Theor. Chem. 978 (2011) 123-125.
  17. M. Mirzaei; Uracil-functionalized ultra-small (n, 0) boron nitride nanotubes (n= 3–6): Computational studies. Superlat. Microstruct. 57 (2013) 44-50.
  18. M. Mirzaei; Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int. J. Nano Dimens. 3 (2013) 175-179.
  19. M. Mirzaei, R.S. Ahangari; Formations of CNT modified 5-(halogen) uracil hybrids: DFT studies. Superlat. Microstruct. 65 (2014) 375-379
  20. E. Naderi, M. Mirzaei, L. Saghaie, G. Khodarahmi, O. Gulseren; Relaxations of methylpyridinone tautomers at the C60 surfaces: DFT studies. Int. J. Nano Dimens. 8 (2017) 124-131.
  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al.; Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
  22. H.E. Pence, A. Williams; ChemSpider: an online chemical information resource, 2010.
  23. S.F. Boys, F. Bernardi; Calculation of small molecular interactions by differences of separate total energies – some procedures with reduced errors. Mol. Phys. 19 (1970) 553-566.
  24. H. Behzadi, N.L. Hadipour, M. Mirzaei; A density functional study of 17O, 14N and 2H electric field gradient tensors in the real crystalline structure of alpha-glycine. Biophys. Chem. 125 (2007) 179-183.
  25. M. Mirzaei, N.L. Hadipour, M.R. Abolhassani; Influence of C-doping on the B-11 and N-14 quadrupole coupling constants in boron-nitride nanotubes: a DFT study. Z. Naturforsch. A 62 (2007) 56-60.
  26. M. Mirzaei, N.L. Hadipour, A. Seif, M. Giahi; Density functional study of zigzag BN nanotubes with equivalent ends. Physica E 40 (2008) 3060-3063.
  27. M. Mirzaei, M. Yousefi; Computational studies of the purine-functionalized graphene sheets. Superlat. Microstruct. 52 (2012) 612-617.
  28. A. Yaraghi, O.M. Ozkendir, M. Mirzaei; DFT studies of 5-fluorouracil tautomers on a silicon graphene nanosheet. Superlat. Microstruct. 85 (2015) 784-788.
  29. Z. Samadi, M. Mirzaei, N.L. Hadipour, S.A. Khorami; Density functional calculations of oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors to study hydrogen bonding properties of peptide group (OC–NH) in crystalline acetamide. J. Mol. Graph. Model. 26 (2008) 977-981.

30. M. Mirzaei, N.L Hadipour; A computational NQR study on the hydrogen‐bonded lattice of cytosine‐5‐acetic acid. J. Comput. Chem. 29 (2008) 832-838