Document Type : Original Research Article

Authors

1 Department of Physics, Faculty of Sciences, Nigerian Defence Academy, Kaduna, Kaduna State, Nigeria

2 Department of Physics, Faculty of Natural and Applied Sciences, Nigerian Army University, Biu, Borno State, Nigeria

3 Department of Physics, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nasarawa State, Nigeria

4 Department of Physics, Faculty of Science, Al-Azhar University, 71452, Assuit, Egypt

Abstract

In this study, we investigated the neutron-induced fissile isotopes of Protactinium-231 using the Coupled-Channeled Optical Model code (OPTMAN) up to 20 MeV. The research was driven by the growing demand for nuclear reactor fuels. Protactinium-231, a naturally occurring radionuclide with significant fuel potential, is found in nearly 100% abundance. When subjected to neutron bombardment, Protactinium-231 can yield fissile materials suitable for use as reactor fuel. We performed computations using two different approaches: The Potential Expanded by Derivatives (PED), which incorporates the Rigid-Rotor Model (RRM) treating nuclei as rigid vibrating spheres while considering nuclear volume conservation, and the Rotational Model Potentials (RMP), which accounts for the Soft-Rotator Model (SRM) treating nuclei as deformable, rotating spheres. Each set of calculated data was compared with data retrieved from the Evaluated Nuclear Data File (ENDF), and a high level of agreement was observed. In all cases, the threshold energies were found to be ≤ 4 MeV for both PED and RMP. Notably, the results obtained from the RMP approach exhibited closer agreement with the retrieved data than those from the PED approach.

Graphical Abstract

Investigation of Nuclear Property of Protactinium-231 for Reactor Fuel Application Using the Coupled-Channel Optical Model Code for Energy up to 20 MeV

Keywords

Main Subjects

  1. References

    1. Ahmad & F.S. Koki, Calculation of Reactions Cross Section for Neutron-Induced Reactions on 127I Isotope.International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2018, 6, 344-59. 10.4236/ijmpcero.2017.63031.
    2. Ahmad, Y.Y. Ibrahim & F.S, Koki, Evaluations of Reactions Cross Section of Radionuclide by Particles Induced Nuclear Reactions using EXIFON Code. Boson Journal of Modern Physics, 2018, 3(2), 220-35. http://scitecresearch.com/journals/index.php/bjmp/article/view/1056
    3. Kara, Excitation function calculations of neutron-induced reactions of some zirconium target isotopes. J. Fusion. Energ.,2018, 36, 230–3. https://doi.org/10.1007/s10894-017-0143-0  
    4. Naik, G.N. Kim, K. Kim, M. Zaman, M. Nadeem & M. Sahid, Neutron-induced reaction cross-section of 93Nb with fast neutron based on 9Be(p,n) reaction. Nucl. Phys. A. 2018, 970, 156–68. https://doi.org/10.1016/j.nuclphysa.2017.11.011.
    5. Liang, Z. Wu, Z. Zhang, Y. Han. & X. Jiao, Calculations and analysis of n+93Nb reaction.Nucl. Sci. Eng., 2018, 187(1), 107–26. https://doi:10.1080/00295639.2017.1295699.
    6. Koning, D. Rochman, J.C. Sublet, N. Dzysiuk, M. Fleming, & S. Van Der Marck, Complete nuclear data library for innovative nuclear science and technology.Nucl Data Sheets, 2019, 155(1), 1–55. https://doi:10.1016/j.nds.2019.01.002.
    7. Eric, N.M. Johnstone & J.M. Edward, Discovery, Nuclear Properties, Synthesis and Application of Echnetium-101. Communications Chemistry, 2022, 1, 1-9. https://doi.org/10.1038/s42004-022-00746-9.
    8. International Atomic Energy Agency, Impact of Fuel Density on Performance and Economy of Research Reactors. IAEA Nuclear Energy Series, 2021, No. NF-T-2.7. https://www.iaea.org/publications/13548
    9. Waldemar, Changing the Shape of a Zirconium Nucleus. Physical Review, 2018, 8, 1-10. https://physics.aps.org/articles/v11/s119.
    10. I. Bykhalo, K.A. Stopani, Reliability of Neutron Yield Cross Sections on 12C-127I Isotopes in Proton-Induced Reaction Evaluated Using GEANT4 Package for Proton Theory Applications,Phys. Atom. Nuclei, 2019, 82, 1476–80. https://doi.org/10.1134/S1063778819120056
    11. C. Knopf & Antony, In Vivo Proton Range Verification: A Review. Phys. Med. Biol., 2018, 58, 13-9. https://doi.org/10.1088/0031-9155/58/15/R131.
    12. Kawano, Y. Cho, P. Dimitriou, D. Filipescu, N. Iwamoto, V. Plujko, IAEA photonuclear data library. Nucl Data Sheets, 2020, 163, 109–62. https://doi:10.1016/j.nds.2019.12.002.
    13. Goriely, P. Dimitriou, M. Wiedeking, T. Belgya, R. Firestone, J. Kopecky, Reference database for photon strength functions.Eur. Phys. J. A., 2019, 55, 172. https://doi:10.1140/epja/i2019-12840-1.
    14. I. Anthony, O.O. Ige, U. Rilwan, A.A. Mohammed, J. Margaret, Atef El-Taher, Effect of Excitation in Neutron Induced Fissile Isotope of Uranium Using the OPTMAN Code Up to 20 MeV, Kirkuk Journal of Science, 2023, 18, 13-20. https://doi.org/10.32894/kujss.2023141459.1105.
    15. Anthony, M.A., Ige, O.O., Rilwan, U.*, Folasanya O.A., Muhammed A.A., Angela, N.U., Atef El-Taher, Effects of Excitation in Neutron Induced Fissile Isotopes of Uranium-235 Using the Coupled-Channelled Optical Model (OPTMAN) Code up to 20 MeV. Eurasian J. Sci. Tech., 2023, 3, 1-7. https://ejst.samipubco.com/author?_action=info&manuscript=411420.
    16. Cerda, V., Rennan, G. O. A., Ferreira, S. L. Revising Flow-Through Cells for Amperometric and Voltammetric Detections Using Stationary Mercury and Bismuth Screen Printed Electrodes. Progress in Chemical and Biochemical Research, 2022; 5(4): 351-366. https://doi:10.22034/pcbr.2022.362520.1232
    17. I. Anthony, O.O. Ige, U. Rilwan, S.A. Jonah, M.A. Aliyu & Atef El-Taher, Comparative Analysis of the Excitation Functions of 238U as Breeder Fuel Using OPTMAN Code., Kirkuk Journal of Science, 18, 1-6, 2023, https://doi:10.32894/kujss.2023.141462.1106
    18. Avrigeanu, & M. Avrigeanu, Consistent optical potential for incident and emitted low-energy α particles. II. α emission in fast-neutron-induced reactions on Zr isotopes.Front. Phys., 2018, 11, 1142436. https://doi:10.3389/fphy.2023.1142436.
    19. Yaling, L. Jianyang, Z. Xunchao, C. Hanjie, Y. Xuesong, Y. Lin, F. Fen, Y. Lei, Neutronics performance and activation calculation of dense tungsten granular target for China-ADS. Nucl. Instrum. Methods Phys. Res. B., 2018, 410, 88–101. https://doi.org/10.1016/j.nimb.2017.08.003.
    20. Qiang, L. Tong, Q. Yijia, L. Changlin, C. Bingjun, Z. Qian, Z. Xuwen & F. Kaihong, Measurement of the cross sections for 238U (n, γ) 239U reaction in the energy range of 14.1-14.8 MeV using neutron activation method. J. Rad. Phys. Chem, 2018, 152, 125-8. https://doi.org/10.1016/j.radphyschem.2018.08.013
    21. Avrigeanu, & M. Avrigeanu, Role of consistent parameter sets in an assessment of the α-particle optical potential below the coulomb barrier. Phys. Rev C,2019, 99, 044613. https://doi:10.1103/PhysRevC.99.044613.
    22. Naik, G. Kim, K. Kim, Measurement of cross sections of Zr-isotopes with the fast neutrons based on the 99Be (p,n) reaction.Eur. Phys. J. A., 2021, 57, 267. https://doi.org/10.1140/epja/s10050-021-00568-8.
    23. Naik, G. Kim, K. Kim, Production cross-sections of Mo-isotopes induced by fast neutrons based on the 9Be (p, n) reaction.Eur. Phys. J., 2020, 135, 704. https://doi.org/10.1140/epjp/s13360-020-00728-7.
    24. Avrigeanu, & M. Avrigeanu, Validation of an optical potential for incident and emitted low-energy α-particles in the A ≈ 60 mass range.Eur. Phys. J. A., 2021, 57, 54. https://doi:10.1140/epja/s10050-020-00336-0.
    25. Avrigeanu, & M. Avrigeanu, Validation of an optical potential for incident and emitted low-energy α-particles in the A ≈ 60 mass range. II. Neutron–induced reactions on Ni isotopes.Eur. Phys. J. A., 2022, 58, 189. https://doi:10.1140/epja/s10050-022-00831-6.
    26. Avrigeanu, & M. Avrigeanu, Consistent optical potential for incident and emitted low-energy α particles. II. α emission in fast-neutron-induced reactions on Zr isotopes.Phys. Rev. C., 2018, 96, 044610. https://doi:10.1103/PhysRevC.96.044610.
    27. Keiichi, Evaluation of Neutron Nuclear Data on Iodine Isotopes. Journal of Nuclear Science and Technology, 2018, 52, 1174-85, https://doi.org/10.1080/00223131.2014.999729.
    28. Gandhi, A. Sharma, R. Pachuau, N. Singh, P.N. Patil, M. Mehta, L.S. Danu, S.V. Suryanarayana, B.K. Nayak, B. Lalremruata & A. Kumar, Neutron Capture Reaction Cross Section Measurement for Iodine Nucleuswith Detailed Uncertainty Quantification. Eur. Phys. J. Plus, 2021, 136, 819 https://doi.org/10.1140/epjp/s13360-021-01824-y
    29. Avrigeanu, & V. Avrigeanu, Consistent assessment of neutron-induced activation of 93Nb. Submitted to Phys. Rev. C, 2023, 14, 1-21, https://doi:10.48550/arXiv.2302.09845.
    30. Abed, M., Ghanaat, F., Sharifian, E., Haddadi, M. Modeling emission dispersion pattern of nitrogen oxide (NOx) in steel production unit in Iran using Phast software. Progress in Chemical and Biochemical Research, 2022; 5(4): 317-330. https://doi:10.22034/pcbr.2022.342317.1224
    31. Anthony M.I., Ige O.O., Rilwan U., Hassan A.M., Angela N.U., El-Taher A., Nuclear Behaviour of Neutron Induced Thorium (232Th) at 20 MeV Using the Coupled Channelled Optical Model Code (OPTMAN Code), J. Sci. Tech., 2023, 2, 1-5. https://ejst.samipubco.com/author?_action=info&manuscrpt=411304.
    32. Anthony M.I., Ige O.O., Rilwan U., Okara O.G., Muhammad A.N., El-Taher A., Using the Coupled Channelled Optical Model Code to Investigate the Nuclear Property of Protactinium-233 for Reactor Fuel Application, Engr. Ind. Res., 2023, 2, 1-6. https://www.jeires.com/author?_action=411845

     

    HOW TO CITE THIS ARTICLE

    Mamedu Imanche Anthony, Olumide Oluwasanmi Ige , Usman Rilwan,  Obiri Gameh Okara, Investigation of Nuclear Property of Protactinium-231 for Reactor Fuel Application Using the Coupled-Channel Optical Model Code for Energy up to 20 MeV  ‏‏, Ad. J. Chem. B, 5 (2023) 370-378.

    DOI: 10.48309/ajcb.2023.411653.1191
    URL: