Document Type : Original Research Article

Authors

1 Department of Chemistry, Federal University of Technology, Akure, Nigeria

2 Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, Nigeria

Abstract

Nanoparticles containing copper metal ions and their derivatives are being used for different medical purposes to prevent infections, ulcers etc. The aim of this study was to qualitatively determine the phytochemicals present in the ethanolic extract of Kigelia africana fruit (which are responsible for the reduction of the copper ions as well as stabilization of the nanoparticles), the synthesis of copper nanoparticles (CuNPs) through a green synthesis route from the ethanolic extract of Kigelia africana fruit and the anti-microbial assessment of the synthesized CuNPs. The synthesized nanoparticles were characterized by UV-Vis Spectrophotometer. Phytochemical screening revealed the presence of alkaloids, glycosides, flavonoids, phenols, steroids, tannins, carbohydrate and terpenoids. The synthesized CuNPs were confirmed by the change in colour from dark yellow to dark green. The CuNPs displayed promising antibacterial activity on Pseudomonas aeruginosa, Shigella sp., Staphylococcus aureus, Salmonella typhi, E. coli. The highest inhibition activity was exhibited by Pseudomonas aeruginosa (17.0 ± 4.24 mm). The CuNPs showed considerable antifungal activity against Aspergillus flavus and Aspergillus niger with inhibition activity of 8.0 ± 2.83 mm and 3.0 ± 4.24 mm respectively. Conclusively, the synthesized CuNPs from Kigelia africana should be incorporated as a therapeutic drug for microbial infectious disease and other health associated disorders.

Graphical Abstract

Green synthesis of Copper Nanoparticles and Investigation of its Antimicrobial Properties

Keywords

Main Subjects

[1] L.A. Ogunfowora, K.O. Iwuozor, J.O. Ighalo and C.A. Igwegbe, Trends in the Treatment of Aquaculture Effluents Using Nanotechnology. Cleaner Materials,  In Press (2021) 
[2] K.O. Iwuozor, J.O. Ighalo, E.C. Emenike, L.A. Ogunfowora and C.A. Igwegbe, Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry,  4 (2021)  16.
[3] K.O. Iwuozor, J.O. Ighalo, L.A. Ogunfowora, A.G. Adeniyi and C.A. Igwegbe, An Empirical Literature Analysis of Adsorbent Performance for Methylene Blue Uptake from Aqueous Media. Journal of Environmental Chemical Engineering,  9 (2021)  105658.
[4] M.R. Wiesner and J.-Y. Bottero, Environmental nanotechnology: applications and impacts of nanomaterials. (2017): McGraw-Hill Education.
[5] P. Iqbal, J.A. Preece and P.M. Mendes, Nanotechnology: The “Top‐Down” and “Bottom‐Up” Approaches. Supramolecular chemistry: from molecules to nanomaterials, (2012) 
[6] S. Chakraborty, B.W. Jo and Y.-S. Yoon, Development of nano cement concrete by top-down and bottom-up nanotechnology concept, in Smart Nanoconcretes and Cement-Based Materials. (2020), Elsevier.  183-213.
[7] S. Ahmad, S. Munir, N. Zeb, A. Ullah, B. Khan, J. Ali, M. Bilal, M. Omer, M. Alamzeb and S.M. Salman, Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. International journal of nanomedicine,  14 (2019)  5087.
[8] D. Mohanta and M. Ahmaruzzaman, Addressing nanotoxicity: green nanotechnology for a sustainable future. The ELSI handbook of nanotechnology: risk, safety, ELSI and commercialization, (2020)  103-112.
[9] A. Saravanan, P.S. Kumar, S. Karishma, D.-V.N. Vo, S. Jeevanantham, P. Yaashikaa and C.S. George, A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere,  264 (2021)  128580.
[10] R. Mohammadinejad, A. Shavandi, D.S. Raie, J. Sangeetha, M. Soleimani, S.S. Hajibehzad, D. Thangadurai, R. Hospet, J.O. Popoola and A. Arzani, Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green chemistry,  21 (2019)  1845-1865.
[11] H.M. Yusof, R. Mohamad and U.H. Zaidan, Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of animal science and biotechnology,  10 (2019)  1-22.
[12] S.K. Chandraker, M.K. Ghosh, M. Lal and R. Shukla, A review on plant-mediated synthesis of silver nanoparticles, their characterization and applications. Nano Express,  2 (2021)  022008.
[13] M. Uzma, V.B. Raghavendra and S. Girisha, Biogenesis of gold nanoparticles, role of fungal endophytes and evaluation of anticancer activity–a review. Eur J Biomed Pharm Sci,  5 (2018)  319-329.
[14] G. Pal, P. Rai and A. Pandey, Green synthesis of nanoparticles: A greener approach for a cleaner future, in Green synthesis, characterization and applications of nanoparticles. (2019), Elsevier.  1-26.
[15] K.O. Iwuozor, L.A. Ogunfowora and I.P. Oyekunle, Review on Sugarcane-Mediated Nanoparticle Synthesis: A Green Approach. SugarTech,  23 (2021)  12.
[16] A. Nabatanzi, S. M Nkadimeng, N. Lall, J.D. Kabasa and L. J McGaw, Ethnobotany, phytochemistry and pharmacological activity of Kigelia africana (Lam.) Benth.(Bignoniaceae). Plants,  9 (2020)  753.
[17] A. Singh, S. Kumari, A.K. Singh and N.K. Singh, Ethnopharmacology and pharmacology of Kigelia africana (Lam.) Benth. Int. J. Green Pharm,  11 (2018)  S23-S31.
[18] S. Halder and A. Sharma, A Review on Kigelia africana. World J. Pharm. Res,  6 (2017)  389-411.
[19] J.A. Falode, O.O. Crown, S.O. Famuyiwa, C.A. Elusiyan, I.V. Ogungbe, A.C. Akinmoladun, M.T. Olaleye and A.A. Akindahunsi, Anti-Acetylcholinesterase Compounds Isolated from the Leaves of Kigelia africana (LAM) Benth (Bignoniaceae). European Journal of Medicinal Plants, (2019)  1-9.
[20] P.B. Ashishie, C.A. Anyama, A.A. Ayi, C.O. Oseghale, E.T. Adesuji and A.H. Labulo, Green synthesis of silver monometallic and copper-silver bimetallic nanoparticles using Kigelia africana fruit extract and evaluation of their antimicrobial activities. International Journal of Physical Sciences,  13 (2018)  24-32.
[21] S. Fatima and P. Lokare, Pharmacognostic Study of Leaves of Kigelia pinnata (Lam) Benth. Journal of Drug Delivery and Therapeutics,  9 (2019)  594-597.
[22] A.K. Gupta and A. Jain, Phyto-chemical and therapeutic briefing of Kigelia africana (Lam.) Benth. Indian Journal of Pharmaceutical and Biological Research,  7 (2019)  14-22.
[23] I. Bello, M.W. Shehu, M. Musa, M.Z. Asmawi and R. Mahmud, Kigelia africana (Lam.) Benth.(Sausage tree): Phytochemistry and pharmacological review of a quintessential African traditional medicinal plant. Journal of ethnopharmacology,  189 (2016)  253-276.
[24] S. Anupriya, K. Elangovan, R. Aravind and K. Murugesan, Synthesis of Silver Nanoparticles Stabilized With Phytochemicals and its Application towards Invitro Antioxidant and Antibacterial Activities. Int. J. Med. Nanotech,  3 (2016)  340.
[25] P. Kalainila, R.E. Ravindran, R. Rohit and S. Renganathan, Anti-bacterial effect of biosynthesized silver nanoparticles using Kigelia africana. Journal of Nanoscience and Nanoengineering,  1 (2015)  225-232.
[26] G.K. Poongavanam and V. Ramalingam, Characteristics investigation on thermophysical properties of synthesized activated carbon nanoparticles dispersed in solar glycol. International Journal of Thermal Sciences,  136 (2019)  15-32.
[27] L. Ravi and K. Kannabiran, Antifungal potential of green synthesized silver nanoparticles (AgNPS) from the stem bark extract of Kigelia pinnata. Research Journal of Pharmacy and Technology,  14 (2021)  1842-1846.
[28] S. Shalini, N. Prabavathy, R. Balasundaraprabhu, T.S. Kumar, D. Velauthapillai, P. Balraju and S. Prasanna, Studies on DSSC encompassing flower shaped assembly of Na-doped TiO2 nanorods sensitized with extract from petals of Kigelia Africana. Optik,  155 (2018)  334-343.
[29] K. Parimala, Seelibalaji and Nithiyasoundari, flower extracts and its antibacterial activity”. International Jo,
[30] G. Inwatia, Y. Raoa and M. Singh. Single step aqueous synthesis of unsupported PtNi nanoalloys using flower extract as reducing agent and their compositional role to enhance electrocatalytic activity. in AIP Conference Proceedings. 2017. AIP Publishing LLC.
[31] I.P. Oyekunle, U.S. Nwogu, O.Q. Orababa, C.C. Nsude, J.O. Ikpa and D.C. Azuka, Phytochemical, Antimicrobial and Proximate Composition of Nicotiana tabacum Leaves Extract. International Journal of Innovative Science and Research Technology,  4 (2019)  5.
[32] O.R. Temitope, O.O. Olugbenga, A.J. Erasmus, I. Jamilu and M.Y. Shehu, Comparative study of the physicochemical properties of male and female flutted pumpkin (Telfairia occidentalis). The Journal of Medical Research,  6 (2020)  55-61.
[33] H.O. Edeoga, D. Okwu and B. Mbaebie, Phytochemical constituents of some Nigerian medicinal plants. African journal of biotechnology,  4 (2005)  685-688.
[34] N.F. Obianagha, C.J. Okafor, U. Chukwuani, O.A. Ogundahunsi, S.O. Ogbonnia, E.I. Obeagu, H.T. Haji and O.H. Said, Evaluation of the Phytochemical Constituents of Extracts of Kigelia africana Fruit and Sorghum bicolor, Stalk in Lagos Nigeria. Journal of Pharmaceutical Research International, (2021)  49-58.
[35] C. Awere, E. Githae and J. Gichumbi, Phytochemical analysis and antifungal activity of Tithonia diversifolia and Kigelia africana extracts against Fusarium oxysporum in tomato. African Journal of Agricultural Research,  17 (2021)  726-732.
[36] O.F. Fagbohun, O.O. Babalola, F.K. Agboola, J.S. Joseph, S. Malindisa and T.A. Msagati, Evaluation of phytochemicals, antioxidants, trace elements in Kigelia africana fruit extracts and chemical profiling analysis using UHPLC-qTOF-MS 2 spectrometry. Biological trace element research,  195 (2020)  679-695.
[37] B. Priya, A. Menkudale, M. Gahlot, P. Joshi and M. Agarwal, Pharmacognostical study, phytochemical analysis and phenolic content of Kigelia africana leaves. Int. J. Pharm. Pharm. Sci,  5 (2013)  163-166.
[38] N.M. Vaidegi, N. Padmapriya and T. Poonguzhali, PHYTOCHEMICAL SCREENING AND ANTIMICROBIAL ACTIVITIES OF ETHANOL EXTRACT OF KIGELIA AFRICANA (LAM) BENTH. (2017) 
[39] A.K. Saini, P. Chauhan, V. Singh and P. Sharma, Phytochemical, antioxidant and in vitro antibacterial activity of aqueous and ethanolic fruit extracts of Kigelia africana. Indian Journal of Pharmaceutical and Biological Research,  1 (2013)  46-52.
[40] K.O. Iwuozor, Qualitative and Quantitative Determination of Anti-Nutritional Factors of Five Wine Samples. Advanced Journal of Chemistry-Section A,  2 (2019)  136-146.
[41] M.P. Patil, R.D. Singh, P.B. Koli, K.T. Patil, B.S. Jagdale, A.R. Tipare and G.-D. Kim, Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial pathogenesis,  121 (2018)  184-189.
[42] S.C. Mali, A. Dhaka, C.K. Githala and R. Trivedi, Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports,  27 (2020)  e00518.
[43] A. Roy and N. Bharadvaja, Silver nanoparticles synthesis from a pharmaceutically important medicinal plant Plumbago zeylanica. MOJ Bioequiv Availab,  3 (2017)  00046.
[44] J.K. Patra and K.-H. Baek, Green synthesis of silver chloride nanoparticles using Prunus persica L. outer peel extract and investigation of antibacterial, anticandidal, antioxidant potential. Green Chemistry Letters and Reviews,  9 (2016)  132-142.
[45] M.W. Amer and A.M. Awwad, Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem Int,  7 (2021)  1-8.
[46] R. Renuka, K.R. Devi, M. Sivakami, T. Thilagavathi, R. Uthrakumar and K. Kaviyarasu, Biosynthesis of silver nanoparticles using Phyllanthus emblica fruit extract for antimicrobial application. Biocatalysis and Agricultural Biotechnology,  24 (2020)  101567.
[47] P. Kalainila, R.E. Ravindran, V. Hemachandran and S. Renganathan, Greener synthesis of silver nanoparticle from Chordia dichotoma leaf extract and its antimicrobial activity. International Journal of Nanoparticles,  9 (2017)  132-142.
[48] C. Onyema and V. Ajiwe, Phytochemical and antimicrobial analysis of the stems of Cola gigantea (Sterculiacea). Int J Eng Sci,  3 (2014)  01-11.
[49] R.H. Ahmed and D.E. Mustafa, Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters,  10 (2020)  1-14.
[50] K. Rajesh, B. Ajitha, Y.A.K. Reddy, Y. Suneetha and P.S. Reddy, Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik,  154 (2018)  593-600.
[51] S. Shende, A.P. Ingle, A. Gade and M. Rai, Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology,  31 (2015)  865-873.
[52] R. Khani, B. Roostaei, G. Bagherzade and M. Moudi, Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: Application for adsorption of triphenylmethane dye and antibacterial assay. Journal of Molecular Liquids,  255 (2018)  541-549.