Document Type : Original Research Article


1 Department of Biology, Faculty of Science, Firat University, Elazig-Turkey

2 Department of Chemistry, Faculty of Science, Firat University, Elazig-Turkey


Due to the toxicity of synthetic antioxidants, their application has been limited or even banned in certain countries. The extraction of phenolic compounds and flavonoids from plant matrices is carried out utilizing a variety of solvents. The aim of this study is to determine the antioxidant activity and total phenolic and flavonoid composition of  Rosmarinus officinalis L., often referred to as rosemary. The study also examines the potential application of rosemary as a natural antioxidant in the food industry. The extraction technique in this study included maceration and microwave-assisted extraction. Maceration was chosen as the traditional extraction technique, while microwave-assisted extraction was used to reduce the extraction time and solvent volume. In both the traditional and microwave-assisted extraction methods, methanol was employed as a solvent. The total phenolic compounds, total flavonoids, antioxidant activity, metal chelating ability, and beta-carotene and lycopene levels of the samples were determined. TPC yielded 40 and 43 mg/g, TFC yielded 12.4 and 20 mg/g, FRAP yielded 37 and 49 mg/g, and MCC yielded 133 and 134 mg/g, respectively, for conventional and microwave-assisted extraction methods. In comparison to the conventional technique, the microwave-assisted extraction method resulted in greater quantities of bioactive compounds. Additionally, rosemary's beta-carotene and lycopene contents were determined to be 8652 and 7849 mg/g dried plant, respectively. Microwave-assisted extraction was found to be more successful, quicker, and less solvent-intensive than the conventional method. Additionally, rosemary is suggested in the food sector as a natural antioxidant instead of a synthetic antioxidant to prevent health-damaging consequences.

Graphical Abstract

Determination of Total Phenolic Compounds and Antioxidant Capacity of Rosmarinus officinalis L. via Microwave-Assisted Extraction


Main Subjects

[1]    S. U. Rehman, T. Ali, S. I. Alam, R. Ullah, A. Zeb, K. W. Lee, B. P. F. Rutten, M. O. Kim, Ferulic Acid Rescues LPS-Induced Neurotoxicity via Modulation of the TLR4 Receptor in the Mouse Hippocampus. Mol. Neurobiol., 56 (2019) 2774–2790.
[2]    B. Ren, T. Yuan, Z. Diao, C. Zhang, Z. Liu, and X. Liu, Protective effects of sesamol on systemic oxidative stress-induced cognitive impairments: Via regulation of Nrf2/Keap1 pathway. Food Funct., 9 (2018) 5912–5924.
[3]    H. S. Arruda, I. A. Neri-Numa, L. A. Kido, M. R. Maróstica Júnior, and G. M. Pastore, Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J. Funct. Foods, 75 (2020) 104203.
[4]    X. Xu, A. Liu, S. Hu, I. Ares, M.R. M. Larranaga, X. Wang, M. Martinez, A. Anadon, M.A. Martinez, Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chem., 353 (2021), 129488.
[5]    G. Martelli and D. Giacomini, Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur. J. Med. Chem., 158 (2018) 91–105.
[6]    P. Li, X. Yang, W. J. Lee, F. Huang, Y. Wang, and Y. Li, Comparison between synthetic and rosemary-based antioxidants for the deep frying of French fries in refined soybean oils evaluated by chemical and non-destructive rapid methods. Food Chem., 335 (2021) 127638.
[7]    M. Moczkowska, S. Karp, O. K. Horbanczuk, M. Hanula, J. Wyrwisz, and M. A. Kurek, Effect of rosemary extract addition on oxidatıve stability and quality of hemp seed oil. Food Bioprod. Process., 124 (2020) 33–47.
[8]    M. D. Mira-Sánchez, J. Castillo-Sánchez, and J. M. Morillas-Ruiz, Comparative study of rosemary extracts and several synthetic and natural food antioxidants. Relevance of carnosic acid/carnosol ratio. Food Chem., 309 (2020) 125688.
[9]    Y. Jin, Z. Liu, D. Liu, G. Shi, D. Liu, Y. Yang, H. Gu, L. Yang, Z. Zhou, Natural antioxidant of rosemary extract used as an additive in the ultrasound-assisted extraction of anthocyanins from lingonberry (Vaccinium vitis-idaea L.) pomace. Ind. Crops Prod., 138 (2019) 111425.
[10]    Z. Ceylan, R. Meral, S. Kose, G. F. U. Sengor, Y. Akinay, M. Durmus, Y. Ucar, Characterized nano-size curcumin and rosemary oil for the limitation microbial spoilage of rainbow trout fillets. LWT, 134 (2020) 109965.
[11]    J. S. Rodrigues, C. P. Valle, A. F. J. Uchoa, D. M. Ramos, F. A. F. Ponte, M. A. S. Rios, J. Q. Malveira, N. M. P. S. Ricardo, Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renew. Energy, 156 (2020) 1100–1106.
[12]    M. C. Marques, A. Hacke, C. A. C. Neto, and L. R. B. Mariutti, Impact of phenolic compounds in the digestion and absorption of carotenoids. Curr. Opin. Food Sci., 39 (2021) 190–196.
[13]    T. Daly, M. A. Jiwan, N. M. O’Brien, and S. A. Aherne, Carotenoid content of commonly consumed herbs and assessment of their bioaccessibility using an in vitro digestion model. Plant foods Hum. Nutr., 65 (2010) 164–169.
[14]    A. S. Marchev, L. V. Vasileva, K. M. Amirova, M. S. Savova, I. K. Koycheva, Z. P. Balcheva-Sivenova, S. M. Vasileva, M. I. Georgiev, Rosmarinic acid - From bench to valuable applications in food industry. Trends Food Sci. Technol., (2021) in press.  
[15]    F. Chemat, M. Abert Vian, and Zill-E-Huma, Microwave assisted - separations: Green chemistry in action. Green Chem. Res. Trends, (2009) 33-62.
[16]    L. Magalhaes, M. Segundo, S. Reis, and J. Lima, Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta, 613 (2008) 1–19.
[17]    V. L. Singleton, R. Orthofer, and R. M. B. T.-M. in E. Lamuela-Raventós, Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 299 (1999) 178–184.
[18]    K. Berker, K. Güçlü, I. Tor, B. Demirata, and R. Apak, Total Antioxidant Capacity Assay Using Optimized Ferricyanide/Prussian Blue Method. Food Anal. Methods, 3 (2010), 154–168.
[19]    A. Szydłowska-Czerniak, C. Dianoczki, K. Recseg, G. Karlovits, and E. Szłyk, Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods, Talanta, 76 (2008) 899–905.
[20]    W. W. Brandt, F. P. Dwyer, and E. C. Gyarfas, Chelate complexes of 1,10-phenanthroline and related compounds, Chemical Reviews, 54 (1954) 959–1017.
[21]    W. Trifa, S. Akkal, M. Lefahal, L. Benmekhebi, and S. Khennouf, Preliminary screening of extracts for determination of antioxidant activity by different methods, Curr. Issues Pharm. Med. Sci., 33 (2020) 32–37.
[22]    M. S. Sammani, S. Clavijo, and V. Cerdà, Recent, advanced sample pretreatments and analytical methods for flavonoids determination in different samples. TrAC Trends Anal. Chem., 138 (2021) 116220.
[23]    P. Gupta and B. De, Differential responses of cell wall bound phenolic compounds in sensitive and tolerant varieties of rice in response to salinity. Plant Signal. Behav., 12 (2017) e1379643.
[24]    S. Al Jitan, S. A. Alkhoori, and L. F. Yousef, Phenolic Acids From Plants: Extraction and Application to Human Health, 1st ed., vol. 58. Elsevier B.V., 2018.
[25]    C.-H. Chan, R. Yusoff, G.-C. Ngoh, and F. W.-L. Kung, Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A, 1218 (2011) 6213–6225.
[26]    T. Rehan, R. Tahira, H. Ullah, U. Tareen, T. Rehan, M. Anees, I. Murtaza, A. Sultan, In vitro bioactivities and subacute toxicity study of O. basilicum, T. vulgaris and R. officinalis. Turkish J. Biochem., 43 (2018) 447–455.
[27]    S. Megateli and M. Krea, Enhancement of total phenolic and flavonoids extraction from Rosmarinus officinalis L using electromagnetic induction heating (EMIH) process. Physiol. Mol. Biol. Plants, 24 (2018) 889–897.
[28]    Y. F. Boix, A. E. F. Dubois, S. Hendrix, L. M. G. Luna, N. Beenaerts, C. E. M. Manrique, C. P. Victorio, A. Cuypers, Assessment of the Antioxidative Potential of Rosmarinus officinalis L. (Lamiaceae) Irrigated with Static Magnetic Field-Treated Water. Brazilian Arch. Biol. Technol., 63 (2020).
[29]    I. Psarrou, A. Oreopoulou, D. Tsimogiannis, and V. Oreopoulou, Extraction Kinetics of Phenolic Antioxidants from the Hydro Distillation Residues of Rosemary and Effect of Pretreatment and Extraction Parameters. Molecules, 25 (2020).
[30]    Y. Amar, B. Meddah, I. Bonacorsi, G. Costa, G. Pezzino, A. Saija, M. Cristani, S. Boussahel, G. Ferlazzo, A. T. Meddah, Phytochemicals, antioxidant and antiproliferative properties of rosmarinus officinalis L on U937 and CaCo-2 cells. Iran. J. Pharm. Res., 16 (2017) 315–327.
[31]    G. Kasparaviciene, K. Ramanauskiene, A. Savickas, S. Velziene, Z. Kalveniene, D. Kazlauskiene, O. Ragazinskiene, K. Ivanauskas, Evaluation of total phenolic content and antioxidant activity of different Rosmarinus officinalis L. ethanolic extracts. Biologija, 59 (2013) 39–44.
[32]    M. Bianchin, D. Pereira, J. F. Almeida, C. Moura, R. S. Pinheiro, L. F. S. Heldt, C. W. I. Haminiuk, S. T. Carpes, Antioxidant Properties of Lyophilized Rosemary and Sage Extracts and its Effect to Prevent Lipid Oxidation in Poultry Pátê. Molecules, 25 (2020)  1–10.
[33]    N. R. Perron and J. L. Brumaghim, A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys., 53 (2009) 75–100.
[34]    F. Zhou, S. Jongberg, M. Zhao, W. Sun, and L. H. Skibsted, Antioxidant efficiency and mechanisms of green tea, rosemary or maté extracts in porcine Longissimus dorsi subjected to iron-induced oxidative stress. Food Chem., 298 (2019) 125030.
[35]    J. Liu, X. Li, J. Lin, Y. Li, T. Wang, Q. Jiang, D. Chen, Sarcan draglabra (Caoshanhu) protects mesenchymal stem cells from oxidative stress: A bioevaluation and mechanistic chemistry. BMC Complement. Altern. Med., 16 (2016) 1–11.
[36]    S. Miah, S. Fukiage, Z. A. Begum, T. Murakami, A. S. Mashio, I. M. M. Rahman, H. Hasegawa,  A technique for the speciation analysis of metal-chelator complexes in aqueous matrices using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. J. Chromatogr. A, 1630 (2020) 461528.
[37]    L. Wang, Z. Liu, H. Jiang, and X. Mao, Biotechnology advances in β-carotene production by microorganisms. Trends Food Sci. Technol., 111 (2021) 322–332.
[38]    J. Y. Lim and X.-D. Wang, Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, 1865 (2020) 158652.