Document Type : Original Research Article

Authors

1 Chemical Crystallography Laboratory, Department of Physics, University of Jammu, Jammu Tawi-180006, India.

2 Department of Pharmaceutical Chemistry, School of Health Science, University of KwaZulu-Natal, Durban-4041, South Africa.

3 Unique Med Chem Laboratories, L-64, Chincholli MIDC, Solapur-413255, M. S., India.

4 Department of Chemistry, Shivaji University, Kolhapur-416004, M.S., India.

5 Department of Physics, Thanthai Periyar Government Institute of Technology, Vellore- 632002, Tamil Nadu, India.

6 Department of Physics, Agni College of Technology OMR, Thalambur, Chennai-600130, Tamil Nadu, India.

Abstract

The crystal structure of (4-methoxyphenyl) acetic acid (C9H10O3) exists in the monoclinic space group P21/c having unit cell parameters: a = 16.268 (15), b = 5.858 (5), c = 9.157 (8) Å, β = 95.24 (2)°, and Z = 4. The structure has been solved by X-ray diffraction methods and it converges to a final reliability index of 0.0620 for 1117 observed reflections. Two intermolecular hydrogen bonds of the type C-H....O and O-H....O have been observed. The O-H....O hydrogen bond leads to the formation of a dimer with R22 (8) graph set motif and it is found linked to another C-H....O intermolecular hydrogen bond. The molecule has been characterized for Hirshfeld surface, energy frameworks and molecular docking studies. The Hirshfeld surface (HS) analysis was performed for the identification of all the close contacts and their strength in the crystal structure. The energy frameworks were analyzed to examine the molecular stability and also to ascertain the dominant energy component. The molecular docking investigations lead to the finding that (4-methoxyphenyl)acetic acid may act as an active anti-microbial (antibacterial and antifungal) drug.

Graphical Abstract

Crystal structure, Hirshfeld surface, Energy framework, and Molecular docking analysis of 4-(methoxyphenyl)acetic acid

Highlights

  • Synthesis, single crystal X-ray structure and Hirshfeld surfaces (HS) of (4-methoxy phenyl)acetic acid have been reported.
  • The results as accrued form the HS and 2D Fingreprint plots were examined in the light of intermolecular interactions, their strength and possible contribution  in the molecular structure of the difunctional compound with carboxylate and electron rich methoxy functionalities. The interaction energies between molecular pairs were investigated and assessed through energy framework modules.
  • The molecule of (4-methoxy phenyl) acetic acid was docked with DNA gyrase and Lanosterol 14 α-demethylase was selected as target for the antifungal agent. The molecular docking method validates the anti-microbial (antibacterial and antifungal) activity of the investigated molecule.

Keywords

Main Subjects

  1. REFERENCES

    1. National Center for Biotechnology Information. PubChem Compound Summary for CID 7690, 4 – Methoxyphenyl acetic acid.
    1. https://pubchem.ncbi.nlm.nih.gov/compound/4-Methoxyphenylacetic-acid, 2021.
    1. P. Deshpande, V.B. Nanduri, A. Pullockaran, H. Christie, R.H. Mueller and R.N. Patel, Microbial hydroxylation of o-bromophenylacetic acid: synthesis of 4-substituted-2,3-dihydrobenzofurans. Journal of Industrial Microbiology and Biotechnology, 35 (2008) 901-906.
    2. Kumaraguru and N.W. Fadnavis, An Improved Process for the Preparation of (+)-3- Methoxy‑N‑formylmorphinan. Organic Process Research & Development, 18 (2014) 174-178.
    3. Tuncel and C. Nergiz, Antimicrobial effect of some olive phenols in a laboratory medium. Letters in Applied Microbiology, 17 (1993) 300-302.
    4. M. Alam and S.R. Adapa, A Facile Synthesis of Phenylacetic Acids via Willgerodt-Kindler Reaction Under PTC Condition.Synthetic Communications,33 (2003) 59-63.
    5. Baumann, F. Von Bruchhausen and G. Wurm, A structure-activity study on the influence of phenolic compounds and bioflavonoids on rat renal prostaglandin synthetase. Naunyn-Schmiedeberg’s Archives of Pharmacology, 307 (1979) 73-78.
    6. V. Chamberlain and R.L. Wain, Studies on plant growth-regulating substances: XXXIII. The influence of ring substituents on the plant growth-regulating activity of phenylacetic acid. Annals of Applied Biology, 69 (1971) 65-72.
    7. S. Mitchell, Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallographica B, 60 (2004) 627-668.
    8. J. Turner, S.P. Thomas, M.W. Shi, D. Jayatilaka and M.A. Spackman, Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chemical Communications, 51 (2015) 3735-3738.
    9. M. Kumar, B.N. Lakshminarayana, S. Nagaraju, S.S. Ananda, B.C. Manjunath, N.K. Lokanath and K. Byrappa, 3D energy frameworks of a potential nutraceutical. Journal of Molecular Structure, 1173 (2018) 300-306.
    10. M. Kumar, A.K. Kudva, B.C. Manjunath, P. Naveen, T. Prashanth, S.A. Khanum, N.K. Lokanath and P. Nagendra, 3D energy framework of a benzophenone acidic dimer. Chemical Data Collections, 19 (2019) 100168.
    11. J. Turner, J.J. Mckinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka and M.A. Spackman, Crystal Explorer 17, The University of Western Australia (2017).
    12. Lengauer and M. Rarey, Computational methods for biomolecular docking. Current Opinion in Structural Biology. 6 (3) (1996) 402-406. 
    13. Wehenkel, P. Fernandez, M. Bellinzoni, V. Catherinot, N. Barilone, G. Labesse,M. Jackson and P.M. Alzari, The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Letters, 580 (2006) 3018-3022.
    14. Aoumeur, N. Tchouar, S. Belaidi, M. Ouassaf, T. Lanez and S. Chtita, Molecular docking studies for the identifications of novel antimicrobial compounds targeting of staphylococcus aureus. Moroccan Journal of Chemistry, 9(2) (2021) 274-289.
    15. M. El-Feky, L.A. Abou-Zeid, M.A. Massoud, S.G. Shokralla1 and H.M. Eisa, Computational Design, Molecular Modeling and Synthesis of New 1,2,4 – Triazole Analogs with Potential Antifungal Activities. SMU Medical Journal, 1(2) (2014) 224-242.
    16. Jorda and S. Puig, Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes, 11 (2020) 795.
    17. A. Wani, V.K. Gupta, R. Kant, S. Aravinda and R. Rai, Conformation and crystal structures of 1-aminocyclohexaneacetic acid (β 3,3 Ac 6 c) in N-protected derivatives. Acta Crystallographica, E70 (2014) 272-277.
    18. A. Wani, V.K. Gupta, R. Kant, S. Aravinda and R. Rai, 2-(1-Amino-4-tert-butylcyclohexyl)acetic acid (tBu-β3,3-Ac6c)hemihydrates. Acta Crystallographica, E69 (2013) o888.
    19. Kant, V.K. Gupta, K. Kapoor and B. Narayana, 2-(2-Chlorophenyl)acetic acid. Acta Crystallographica Section E, 68 (2012) o1940.
    20. M. Sheldrick, A Short History of SHELX. Acta Crystallographica, A64, (2008) 112-122.
    21. M. Sheldrick, SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallographica, C71 (2015) 3-8.
    22. J.C. Wilson, International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables. Acta Crystallographica, A51 (1995) 441-444.
    23. F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. Van De Streek, and P.A. Wood, New Features for the Visualization and Investigation of Crystal Structures. Journal of Applied Crystallography, 41 (2008) 466-470.
    24. L. Spek, Structure validation in chemical crystallography. Acta Crystallographica, D65 (2009) 148-155.
    25. Nardelli, PARST: a system of Fortran routines for calculating molecular structure parameters from the results of crystal structure analyses. Journal of Applied Crystallography, 28 (1995) 659-659.
    26. Trott and A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31 (2010) 455-461.
    27. S. Khan, N.H. Rama, G. Qadeer, A. Noor, and R. Kempe, Crystal structure of methyl2-(2-formyl-3,4,5-trimethoxyphenyl)acetate, C13H16O6. Zeitschrift für Kristallographie – New Crystal Structures, 221 (2006) 497-498.
    28. A. Guzei, A.R. Gunderson and N.J. Hill, 2-(3-Bromo-4-methoxyphenyl) acetic acid. Acta Crystallographica, E66 (2010) o1555-o1556.
    29. R. Choudhury and T.N. Guru Row, (3-Methoxyphenyl)acetic acid. Acta Crystallographica, E58 (2002) o889-o890.
    30. A. Spackman, and D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm, 11 (2009) 19-32.
    31. J. McKinnon, D. Jayatilaka and M.A. Spackman, Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, 37 (2007) 3814-3816.
    32. J. Turner, S. Grabowsky, D. Jayatilaka and M.A. Spackman, Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals. The Journal of Physical Chemistry Letters, 5 (2014) 4249-4255.
    33. J. Edwards, C.F. Mackenzie, P.R. Spackman, D. Jayatilaka and M.A. Spackman, Intermolecular interactions in molecular crystals: what’s in a name?. Faraday Discussions, 203 (2017) 93-112.
    34. F. Mackenzie, P.R. Spackman, D. Jayatilaka, and M.A. Spackman, CrystalExplorermodel energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 4 (2017) 575-587.
    35. Murugavel, S. Sundramoorthy, D. Lakshmanan, R. Subashini, P. Pavan Kumar, Synthesis, crystal structure analysis, spectral (NMR, FT-IR, FT-Raman and UV-Vis) investigations, molecular docking studies, antimicrobial studies and quantum chemical calculations of a novel 4-chloro-8-methoxyquinoline-2(1H)-one: an effective antimicrobial agent and an inhibition of DNA gyrase and lanosterol-14α-demethylase enzymes. Journal of molecular structure, 1131 (2017) 51-72.