Document Type : Original Research Article


1 Equipe de Chimie Organique et Analytique des Substances Bioactives, Faculté des Sciences et Téchniques, Université Marien Ngouabi, Brazzaville-Congo BP 69, Congo

2 Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

3 Equipe pluridisciplinaire de Recherche en Alimentation et Nutrition. Laboratoire de Chimie et Technologie AlimentairesFaculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville-Congo BP 69, Congo


A highly efficient and easy protocol Copper-catalyzed decarboxylative amination of α,β-unsaturated carboxylic acids with N-Fluorobenzenesulfonimide as a nitrogen source and an oxidant has been developed. The present protocol, which includes C-N bond formation in one step through addition, oxidation, and decarboxylation processes, leads to the desired enamine products. Thus the results of the experiments have shown that this study is the novel example of copper-catalyzed decarboxylative atom transfer radical of α,β-unsaturated carboxylic acids. In addition, a wide range of enamines with different substitution patterns was prepared and different groups such as chloro, Bromo, fluoro, methyl, and methoxy were employed to give products in moderate to excellent yield. The mechanistic investigations revealed that the catalytic cycle was initiated by the oxidation of Cu (I) with NFSI to provide the nitrogen-centered radical species. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra.

Graphical Abstract

Copper-Catalyzed Decarboxylation of Α,Β-Unsaturated Carboxylic Acids with N-Fluorobenzenesulfonimide: Synthesis of Enamines


Main Subjects

[1] F. Guo, M.D. Clift, R.J. Thomson, Couplage Oxydatif d'Enolates, Enol Silanes et Examines: Méthodes et Synthèse de Produits Naturels, Journal. Européen. de chimie organique., 26 (2012) 4881–4896.
[2] H.R.P. Tracey, J. Antoline, K. C. M. Kurtz,   L. Shen, B.W. Sla K fer, Y. Zhang, Houben-Weyl Methods of Molecular Transformations, Weinreb Steve M., editor, 2005
[3] M. Chen, Z.H. Ren, Y.Y Wang, Z.H. Guan,. Palladium‐Catalyzed Oxidative Carbonylation of the Alkenyl C-H Bonds of Enamides: Synthesis of 1, 3‐Oxazin‐6‐ones, Angew Chem. Int. Ed., 52 (2013) 14196.
[4] G. Wittig, H. Blumental, Chem. Ber., 1,2-Dihydroisoquinolines, 60 (1927), 1.
[5] D.R Carbery, Enamides: valuable organic substrates Org. Biomol. Chem., 6 (2008), 3455–3460.
[6] H. McAlonan, J.P. Murphy, M. Nieuwhuyzen, K. Reynolds, P.K.S. Sarma, P.J. Stevenson, N. Thompson N., 4-phenyloxazolidin-2-ones and  isoindolin-1-ones: chiral auxiliaries for Diels-L-alder reaction of N-substituted 1,3-dienes,  J. Chem. Soc. Perkin transactions., 1(2002) 69-79.
[7] O. Cervinka, Preparation of Enamines,The Chemistry of Enamines; Rappoport, Z. Ed.; Wiley & Sons Ltd, (1994) 467-513.
[8] C. Mannich, H. Davidsen, Chem. Ber., 69 (1936) 2106-2112.
[9] P. Wittig, R. Meyer, Z. Chem., 7 (1967) 57.
[10] F.W. Heyl, M.E. Herr, Enamine derivatives of steroidal carbony compounds, J. Am. Chem. Soc., 74 (1952) 3627-3630.
[11] P.W. Hickmott, Enamines: Recent Advances in Synthetic, Spectroscopic, Mechanistic and Stereochemical Aspects, Tetrahedron., 38 (1982) 1975-2050.
[12] G.B Fischer, L. Lee, F.W. Klettke, Une nouvelle synthèse facile des énamines aldéhydiques à haut rendement et haute pureté. Synthetic Communications. 24 (1994) 1541-1546.
[13] G. Cook, Enamines: Synthèse: Structure et réactions, deuxième éd, (1988).
[14] R. Carlson, A. Nilsson, Improve titanium tetrachloride procedure for enamine synthesis: II. Scope of the reaction, Acta Chem. Scand B, 38 (1984) 49-53.
[15] Y. Sato, H.G. Latham, N. Ikekawa, Chemistry of the spiroaminoketal side chain of solasodine and tomatidine. IV. Chemistry of the tomatidine side chain, J. Org. Chem., 25(1960) 1962-1965.
[16] W. P. Unsworth, G. Coulthard, C. Kitsiou et R. JK. Taylor, Acylation directe d'imine.
[17]M. Daskeviciene, S. Paek, A. Magomedov, K. T. Cho, M. Saliba, A. Kizeleviciute, T. Malinauskas,   A. Gruodis, V. Jankauskas,  E. Kamarauskas,   M. K. Nazeeruddin and  V. Getautis, Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells., J. Mater. Chem. C.,7 (2019) 2717-2724.
[18] G. Zhang, T. Xiong, Z. Wang, X. Guoxing, X. Wang, Q. Zhang, Highly Regioselecive Radical Amination of allenes: Direct Synthesis of Allenamides and Tetrasubstituted alkenes, Angew. Chem. Int. Ed., 54(2015) 12649-12653.
[19] Z. Deng, J. Wei, L. Liao, H. Huang, X. Zhao, Organoselenium-catalyzed, hydroxy-controlled regio-and stereoselective amination of terminal alkenes: Efficient synthesis of 3-amino allylic alcohols, Org. Lett., 17(2015) 1834-1837.
[20] W. Jia and N. Jiao, Cu-Catalyzed oxidative Amidation of propiolic acids Under Air via Decarboxylative coupling, Org. Lett., 12 (2010) 2000-2003
[21] J. P. Guthrie, Acetopyruvate. Enamine formation with aminoacetate decarboxylase, J. Am. Chem. Soc., 94 (1972) 7024-7029.
[22] P. García-Reynaga, K. Angela, Carrillo, S Michael. VanNieuwenhze, Decarbonylative Approach to the Synthesis of Enamides from Amino Acids: Stereoselective Synthesis of the (Z)-Aminovinyl-Dcysteine Unit of Mersacidin, Orgic letter, 14(2012) 1030–1033.
[23] K. Sun, Y. Li, T Xiong, J Zhang, J. Am. Chem. Soc, 2011. Aminations C-H catalysées au palladium d'anilides avec N- fluorobenzènesulfonimide.
[24] W. Zeng, S. R. Chemler, , Copper(II)-Catalyzed Enantioselective Intramolecular Carboamination of Alkenes, J. Am. Chem., Soc. 129 (2007) 12948–12949.
[25] E. S. Sherman, P. H. Fuller, D. Kasi, S. R. Chemler, Pyrrolidine and Piperidine Formation via Copper(II) Carboxylate-Promoted Intramolecular Carboamination of Unactivated Olefins:  Diastereoselectivity and Mechanism, J. Org. Chem., 72 (2007) 3896–3905.
[26] E. S. Sherman, S. R. Chemler, Copper(II)-Catalyzed Aminooxygenation and Carboamination of N-Aryl-2-Allylanilines., Adv. Synth. Catal. 351(2009),, 467-471.
[27] J. P. Wolfe, Stereoselective synthesis of saturated heterocycles via palladium-catalyzed alkene carboetherification and carboamination reactions, Synlett., 19 (2008) 2913-2937.
[28] G. Zhang, L. Cui, Y. Wang, L. Zhang,. J Am. Chem. Soc. Homogeneous Gold-Catalyzed Oxidative Carboheterofunctionalization of Alkenes, 132 (2010) 1474–1475.
[29] S. Hayashi, H. Yorimitsu, K Oshima, Synthesis of Aziridines by Palladium‐Catalyzed Reactions of Allylamines with Aryl and Alkenyl Halides: Evidence of a syn‐Carboamination Pathway., Angew. Chem., Int. Ed. 48 (2009) 7224.
[30] H. Zhang, W. Pu, T. Xiong, Y. Li, X. Zhou, K. Sun, Q. Liu, Q. Zhang,. Angew. Chem, Int. Ed., 52 (2013) 2529.
[31] T. Xiong, Y. Li, L. Mao, Q. Zhang, Q. Zhang,. Palladium-catalyzed allylic C–H amination of alkenes with N-fluorodibenzenesulfonimide: water plays an important role. Chem. Commun., 48 (2012) 2246.
[32] K .M Engle, T.S Mei, X. Wang, J.Q Yu,  Bystanding F+ Oxidants Enable Selective Reductive Elimination from High‐Valent Metal Centers in Catalysis, Angewandte Chemie., 7 (2011) 1478-1491.
[33] Ni. Zhikun, Q. Zhang, T. Xiong, Y. Zheng, Y. Li, H. Zhang., J. Zhang and Q. Liu., Highly Regioselective Copper-Catalyzed Benzylic C-H Amination by N-Fluorobenzenesulfonimide,. 124 (2012), 1270 –1273.
[34] S. Z. Zard, Recent progress in the generation and use of nitrogen-centred radicals, Chem. Soc. Rev., 37 (2008) 1603.
[35] R. G. Hicks, Metal Complexes of Aminyl Radicals, Angew. Chem., Int. Ed. 47 (2009) 7393.
[36] S.H. Tsuritani, K. Oshima, Et3B-Induced Radical Addition of N,N-Dichlorosulfonamide to Alkenes and Pyrrolidine Formation via Radical A 2003., J. Org. Chem., 68 (2003) 3246