Document Type : Original Research Article


1 Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Islamic Azad Medical Sciences University, Tehran, Iran

2 Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran



Non-covalent interactions of N-(4-carboxyphenyl)phthalimide (CPP) with carbon nanotubes (CNTs) have been investigated to see the effects of interactions on the properties of CPP, which is a medicinal compound. Two models of (3,3) armchair and (6,0) zigzag CNTs have been considered in this work. All structures have been optimized by density functional theory (DFT) calculations to evaluate the corresponding properties. Moreover, quadrupole coupling constants (CQ) have been evaluated at the atomic scale for the optimized structures. The results yielded stabilized CPP@CNT hybrids by effects of hybridization on the properties of both of CPP and CNT counterparts. The CQ parameters also indicate that the carbon atoms are very much important to detect the type of CNT whereas other atoms showed almost the same effects at the same situations. As a result, the CPP could be very well hybridized with the CNT through non-covalent interacting system.

Graphical Abstract

Non-Covalent Interactions of N-(4-CarboxyPhenyl)Phthalimide with CNTs


  1. Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-58.
  2. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F. Carbon nanotube-and graphene-based nanomaterials and applications: A review. Carbon 2019;141:467-480.
  3. Barnard AW, Zhang M, Wiederhecker GS, Lipson M, McEuen PL. Real-time vibrations of a carbon nanotube. Nature 2019;566:89-93.
  4. Mirzaei M. Calculation of chemical shielding in C-doped zigzag BN nanotubes. Monatsh. Chem. 2009;140:1275-1278.
  5. Mirzaei M, Mirzaei M. The B-doped SiC nanotubes: A computational study. J. Mol. Struct. THEOCHEM 2010;953:134-138.
  6. Mirzaei M. Carbon doped boron phosphide nanotubes: a computational study. J. Mol. Model. 2011;17:89-96.
  7. Mirzaei M. Density functional study of defects in boron nitride nanotubes. Z. Phys. Chem. 2009;223:815-823.
  8. Mirzaei M, Hadipour NL, Seif A, Giahi M. Density functional study of zigzag BN nanotubes with equivalent ends. Physica E 2008;40:3060-3063.
  9. Mirzaei M, Mirzaei M. The C-doped AlP nanotubes: A computational study. Solid State Sci. 2011;13:244-250.
  10. Mirzaei M. A computational NMR study of boron phosphide nanotubes. Z. Naturforsch. A 2010;65:844-848.
  11. Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E 2010;42:1954-1957.
  12. Ebrahim-Habibi MB, Ghobeh M, Mahyari FA, Rafii-Tabar H, Sasanpour P. An investigation into non-covalent functionalization of a single-walled carbon nanotube and a graphene sheet with protein G: A combined experimental and molecular dynamics study. Sci. Rep. 2019;9:1-8.
  13. Park M, Lee H, Jang JU, Park JH, Kim CH, Kim SY, Kim J. Phenyl glycidyl ether as an effective noncovalent functionalization agent for multiwalled carbon nanotube. Compos. Sci. Technol. 2019;177:96-102.
  14. Mirzaei M, Kalhor HR, Hadipour NL. Covalent hybridization of CNT by thymine and uracil: A computational study. J. Mol. Model. 2011;17:695-699.
  15. Mirzaei M, Yousefi M. Computational studies of the purine-functionalized graphene sheets. Superlat. Microstruct. 2012;52:612-617.
  16. Kumar RM, Rajesh K, Haldar S, Gupta P, Murali K, Roy P, Lahiri D. Surface modification of CNT reinforced UHMWPE composite for sustained drug delivery. J. Drug Delivery Sci. Technol. 2019;52:748-759.
  17. Sheikhi M, Shahab S, Khaleghian M, Ahmadianarog M, Azarakhshi F, Kumar R. Investigation of the adsorption rubraca anticancer drug on the CNT (4, 4-8) nanotube as a factor of drug delivery. Cur. Mol. Med. 2019;19:473-486.
  18. Li H, Sun X, Li Y, Li B, Liang C, Wang H. Preparation and properties of carbon nanotube (Fe)/hydroxyapatite composite as magnetic targeted drug delivery carrier. Mater. Sci. Engin. C 2019;97:222-229.
  19. Dong P, Rakesh KP, Manukumar HM, Mohammed YH, Karthik CS, Sumathi S, Mallu P, Qin HL. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg. Chem. 2019;85:325-336.
  20. Mirzaei M. Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int. J. Nano Dimens. 2013;3:175-179.
  21. Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem. Rev. 2019;119:9559-9656.
  22. Srivastava D, Menon M, Cho K. Computational nanotechnology with carbon nanotubes and fullerenes. Comput. Sci. Engin. 2001;3:42-55.
  23. Belin T, Epron F. Characterization methods of carbon nanotubes: a review. Mater. Sci. Engin. B 2005;119:105-118.
  24. Kumar V, Banker GS. Incompatibility of polyvinyl acetate phthalate with benzocaine: Isolation and characterization of 4-phthalimidobenzoic acid ethyl ester. Int. J. Pharm. 1992;79:61-65.
  25. Liang ZP, Li J, Huang BY. 4-Phthalimidobenzoic acid N, N-dimethylformamide solvate. Acta Cryst. E 2006;62:4761-4762.
  26. Iman M, Fakhari S, Jahanpanah M, Naderi N, Davood A. Design and synthesis of 4-flurophthalimides as potential anticonvulsant agents. Iran. J. Pharm. Res. 2018;17:896-905.
  27. Vamecq J, Bac P, Herrenknecht C, Maurois P, Delcourt P, Stables JP. Synthesis and anticonvulsant and neurotoxic properties of substituted N-phenyl derivatives of the phthalimide pharmacophore. J. Med. Chem. 2000;43:1311-1319.
  28. Lovitt JI, Hawes CS, Gunnlaugsson T. Crystallographic studies of 2-picolyl substituted naphthalene diimide and bis-phthalimide ligands and their supramolecular coordination chemistry. CrystEngComm. 2019;21:207-217.
  29. Singh RB, Singh GK, Chaturvedi K, Kumar D, Singh SK, Zaman MK. Design, synthesis, characterization, and molecular modeling studies of novel oxadiazole derivatives of nipecotic acid. Med. Chem. Res. 2018;27:137-152.
  30. Patel N, Viguera AC, Baldessarini RJ. Mood-stabilizing anticonvulsants, spina bifida, and folate supplementation: commentary. J. Clin. Psychopharm. 2018;38:7-10.
  31. Soleimani M, Mirzaei M, Mofid MR, Khodarahmi G, Rahimpour SF. Lactoperoxidase inhibition by tautomeric propylthiouracils. Asian J. Green Chem. 2020;4:1-0.
  32. Alidoosti ZS, Mirzaei M. Comparative examination of moclobemide, tranylcypromine, phenelzine and isocarboxazid for monoamine oxidase-A inhibition. Adv. J. Chem. B 2019;1:23-28.
  33. Esfahani AN, Mirzaei M. Flavonoid derivatives for monoamine oxidase-A inhibition. Adv. J. Chem. B 2019;1:17-22.
  34. Ozkendir OM, Mirzaei M. Alkali metal chelation by 3-hydroxy-4-pyridinone. Adv. J. Chem. B 2019;1:10-6.
  35. Nazemi H, Mirzaei M, Jafari E. Antidepressant activity of curcumin by monoamine oxidase-A inhibition. J. Adv. Chem. B 2019;1:3-9.
  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, et al. Gaussian 98, Revision A. 7. Pittsburgh, PA: Gaussian. Inc. Computer Program. 1998.
  37. Bodaghi A, Mirzaei M, Seif A, Giahi M. A computational NMR study on zigzag aluminum nitride nanotubes. Physica E 2008;41:209-212.
  38. Mirzaei M, Meskinfam M. Computational studies of effects of tubular lengths on the NMR properties of pristine and carbon decorated boron phosphide nanotubes. Solid State Sci. 2011;13:1926-1930.
  39. Wu G. Recent developments in solid-state nuclear magnetic resonance of quadrupolar nuclei. Biochem. Cell Biol. 1998;76:429-442.
  40. Shen J, Terskikh V, Wang X, Hung I, Gan Z, Wu G. A quadrupole-central-transition 17O NMR study of nicotinamide. J. Phys. Chem. B 2018;122:4813-4820.
  41. Mirzaei M, Hadipour NL. Study of hydrogen bonds in 1-methyluracil by DFT calculations of oxygen, nitrogen, and hydrogen quadrupole coupling constants and isotropic chemical shifts. Chem. Phys. Lett 2007;438:304-307.
  42. Mirzaei M, Elmi F, Hadipour NL. A systematic investigation of hydrogen-bonding effects on the 17O, 14N, and 2H nuclear quadrupole resonance parameters of anhydrous and monohydrated cytosine crystalline structures: a density functional theory study. J. Phys. Chem. B 2006;110:10991-10996.
  43. Bagheri Z, Mirzaei M, Hadipour NL, Abolhassani MR. Density functional theory study of boron nitride nanotubes: calculations of the N-14 and B-11 nuclear quadrupole resonance parameters. J. Comput. Theor. Nanosci. 2008;5:614-618.
  44. Mirzaei M, Hadipour NL, Abolhassani MR. Influence of C-doping on the B-11 and N-14 quadrupole coupling constants in boron-nitride nanotubes: A DFT study. Z. Naturforsch. A 2007;62:56-60.
  45. Mirzaei M, Hadipour NL. A computational NQR study on the hydrogen‐bonded lattice of cytosine‐5‐acetic acid. J. Comput. Chemi. 2008;29:832-838.
  46. Mirzaei M, Hadipour NL, Ahmadi K. Investigation of C-H…O=C and N-H…O=C hydrogen-bonding interactions in crystalline thymine by DFT calculations of O-17, N-14 and H-2 NQR parameters. Biophys. Chem. 2007;125:411-415.
  47. Behzadi H, Hadipour NL, Mirzaei M. A density functional study of 17O, 14N and 2H electric field gradient tensors in the real crystalline structure of α-glycine. Biophys. Chem. 2007;125:179-183.
  48. Samadi Z, Mirzaei M, Hadipour NL, Khorami SA. Density functional calculations of oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors to study hydrogen bonding properties of peptide group (O=C-NH) in crystalline acetamide. J. Mol. Graph. Model. 2008;26:977-981.
  49. Harismah K, Mirzaei M, Moradi R. DFT studies of single lithium adsorption on coronene. Z. Naturforsch. A 2018;73:685-691.
  50. Partovi T, Mirzaei M, Hadipour NL. The C-H···O hydrogen bonding effects on the 17O electric field gradient and chemical shielding tensors in crystalline 1-methyluracil: A DFT study. Z. Naturforsch. A 2006;61:383-388.