Document Type : Original Research Article


Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.



Density functional theory (DFT) calculations have been performed to investigate the adsorption of hydrogen (H2), nitrogen (N2) and carbon monoxide (CO) diatomic gaseous molecules at the surface of Li+ contained C16B8P8 fullerene-like nanostructure (Li+@C16B8P8). The evaluated results from the optimized structures indicated that the adsorption processes could be taken placed for the interacting gas and fullerene systems. Moreover, the electronic properties indicated that the electrical conductivities of Nano Clusters systems are changed after the adsorption processes, in which it could be a signal for detection or sensing of the existence of the gas in the environment. These changes lead to declining the HOMO/LUMO gap of the Fullerene-Like Nano Cage to its original value. As a finding of this work, it could be mentioned that the Li+@C16B8P8 fullerene-like nano cage could be considered as a suitable adsorbent for the CO, N2 and H2 gaseous. It means that the utilized Li+@C16B8P8 Fullerene-Like Nano Cage can detect the existence of gas in the environment.

Graphical Abstract

Adsorptions of Diatomic Gaseous Molecules (H2, N2 and CO) on the Surface of Li+@C16B8P8 Fullerene-Like Nanostructure: Computational Studies


Main Subjects

1. A. Herzog, M. Tatsutani; A hydrogen future?.
Natural Resources Defense Council. Issued
Paper: November (2005).
2. K.T. Busby; Seeking sustainability: Adopting
sustainable and renewable energy sources to
create a maintable world. Inquiries J. 4 (2012)
3. J. Zhou, Q. Wang, Q. Sun, P. Jena, X.S. Chen;
Electric field enhanced hydrogen storage on
polarizable materials substrates. PNAS 107
(2010) 2801–2806.
4. B. Schreiner, H.J. Reinhardt; Use of industrial
gases in petrochemistry. Hydrocarbon Proc.
87 (2008) 1-24.
5. S.S. Mao, S. Shen, L. Guo; Nanomaterials for
renewable hydrogen production, storage and
utilization. Prog. Natural Sci. 22 (2012) 522–
6. M.U. Niemann, S. Srinivasan, A.R. Phani, A.
Kumar, D.Y. Goswami, E.K. Stefanakos;
Nanomaterials for hydrogen storage
applications: A review. J. Nanomater. 2008
(2008) 950967.
7. T.H. Tran, V.T. Nguyen; Copper oxide
nanomaterials prepared by solution methods,
some properties, and Potential applications: A
brief review. Int. Scholarly Res. Not. 2014
(2014) 856592.
8. C.L. Quéré, M.R. Raupach, J.G. Canadell, G.
Marland et al.; Trends in the sources and sinks
of carbon dioxide. Nature Geosci. 2(2009)
9. S. Santucci, S. Picozzi, F. Di Gregorio, L. Lozzi,
C. Cantalini, L. Valentini, J.M. Kenny, B. Delley;
NO and CO gas adsorption on carbon
nanotubes: Experiment and theory. J. Chem.
Phys. 20 (2003) 10904–10910.
10. T.C. Dinadayalane, J. Leszczynski; Remarkable
diversity of carbon–carbon bonds: structures
and properties of fullerenes, carbon
nanotubes, and grapheme. Struct. Chem. 6
(2010) 1155–1169.

Adv. J. Chem. B 1 (2019) 29–36 35
© SAMI Publishing Company (SPC)
11. J.H. Guo, H. Zhang; The effect of electric field
on hydrogen storage for B/C/N sheets. Struct.
Chem. 22 (2011) 1039–1045.
12. T.C. Dinadayalane, A. Kaczmarek, J.
Lukaszewicz, J. Leszczynski; Chemisorption of
hydrogen atoms on the sidewalls of armchair
single–walled carbon nanotubes. J. Phys.
Chem. C 20 (2007) 7376–7383.
13. A. Kaczmarek, T.C. Dinadayalane, J.
Lukaszewicz, J. Leszczynski; Effect of tube
length on the chemisorptions of one and two
hydrogen atoms on the sidewalls of (3,3) and
(4,4) single–walled carbon nanotubes: A
theoretical study. Int. J. Quant. Chem. 12
(2007) 2211–2219.
14. T.C. Dinadayalane, J. Leszczynski; Stone–
wales defects with two different orientations
in (5, 5) single–walled carbon nanotubes: A
theoretical study. Chem. Phys. Lett. 434
(2007) 86–91.
15. T.C. Dinadayalene, J.S. Murray, M.C. Concha,
P. Politzer, J. Leszczynski; Reactivities of sites
on (5,5) single–walled carbon nanotubes with
and without a stone–wales defect. J. Chem.
Theor. Comput. 6 (2010) 1351–1357.
16. F.Fallahpour, M. Nouraliei, S.S. Gorgani;
Theoretical evaluation of a double–functional
heterogeneous nano–sensor. Appl. Surf. Sci.
366 (2016) 545–551.
17. P. A. Ghamsari, M. Nouraliei, S.S. Gorgani; DFT
simulation towards evaluation the molecular
structure and properties of the
heterogeneous C
16Mg8O8 nano–cage as
selective nano–sensor for H
2 and N2 gases. J.
Mol. Graph. Model. 70 (2016) 163–169.
18. S.S. Gorgani, M. Nouraliei, S.S. Gorgani;
Heterogeneous C
16Zn8O8 nanocluster as a
selective CO/NO nanosensor: Computational
investigation. Int. J. Environ. Sci. Technol. 13
(2016) 1573–1580.
19. D. Golberg, Y. Bando; Octahedral boron
nitride fullerenes formed by electron beam
irradiation. Appl. Phys. Lett. 73 (1998) 2441–
20. H. Omidvar, S. Goodarzi, A. Seif, A.R.
Azadmehr; Influence of anodization
parameters on the morphology of TiO
nanotube arrays. Superlat. Microstruct. 50
(2011) 26–39.
21. S.K. Jain, P. Srivastava; Structural stability of
nitrogen–doped ultrathin single–walled
boron nanotubes: an ab initio study. Comp.
Mater. Sci. 50 (2011) 3038–3042.
22. D.C. Pestana, P.P. Power; Nature of the
boron–phosphorus bond in monomeric
phosphinoboranes and related compounds. J.
Am. Chem. Soc. 113 (1991) 8426–8437.
23. V. Ferreira, H.W.L. Alves; Boron phosphide as
the buffer–layer for the epitaxial III–nitride
growth: A theoretical study, J. Cryst. Growth
310 (2008) 3973–3978.
24. H. Kawabata, H. Tachikawa; DFT study on the
interaction of the smallest fullerene C
20 with
lithium ions and atoms. J. Carbon Res. 3 (2017)
25. E. Cuestas, P. Serra; Localization of the
valence electron of endohedrally confined
hydrogen, lithium and sodium in fullerene
cages. Int. J. Mod. Phys. B. 30 (2016) 1650055.
26. C.H. Suresh, T.L. Lincy, N. Mohan, R. Rakhi,
Aromatization energy and strain energy of
buckminsterfullerene from homodesmotic
reactions. J. Phys. Chem. A 119 (2015) 6683–
27. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.E.
Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N.
Matsunaga, K. Nguyen, S. Su, T, Windus, M.
Dupuis, J. Montgomery; General atomic and
molecular electronic structure system. J.
Comput. Chem. 14 (1993)1347–1363.
28. A.E. Reed, L.A. Curtiss, F. Weinhold;
Intermolecular interactions from a natural
bond orbital, donor–acceptor viewpoint.
Chem. Rev. 88 (1988) 899–926.

S. Ariaei, Adsorptions of Diatomic Gaseous Molecules… 36
© SAMI Publishing Company (SPC)
29. S. Li; Semiconductor Physical Electronics, 2nd
Ed., Springer, USA, 2006.
30. H. Nazemi, M. Mirzaei, E. Jafari;
Antidepressant activity of curcumin by
monoamine oxidase–A inhibition. J. Adv.
Chem. B 1 (2019) 3–9.
31. A.N. Esfahani, M. Mirzaei, Flavonoid
derivatives for monoamine oxidase–A
inhibition. Adv. J. Chem. B 1 (2019) 19–22.
32. O.M. Ozkendir, M. Mirzaei; Alkali metal
chelation by 3–hydroxy–4–pyridinone. Adv. J.
Chem. B 1 (2019) 10–16.
33. A. Kouchaki, O. Gulseren, N. Hadipour, M.
Mirzaei; Relaxations of fluorouracil tautomers
by decorations of fullerene–like SiCs: DFT
studies. Phys. Lett. A 380 (2016) 2160–2166.