Document Type : Original Research Article

Author

Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran

10.22034/ajcb.2022.329529.1108

Abstract

Cyclohexane and hetero cyclohexane are good models for studying stereo electronics. The derivatives of 1, 3-dioxane are the good examples of ground and transition states of hyper-conjugated reactions. The structural and thermodynamic parameters for 1, 3-dioxane derivatives are investigated by MP2 and B3LYP methods for axial and equatorial conformations. By NBO analysis, the stabilization energy electron delocalization associated with LP2O→σ*P-F is reported in the axial conformation 13.16 and equatorial conformations 1.93, 3.45 kcal/mol for the MP2 and B3LYP methods, respectively. The stabilization of energy electrons delocalization in the axial conformation is higher than that of the equatorial one, indicating that the electrons delocalization transfer occurs more in the axial conformation. The studies on vibrational frequency and bond lengths P-O and P-F have also confirmed this issue. By calculating HOMO and LUMO energy, the hardness and softness, electronegativity, electron affinity energy, ionization energy, and electrophilicity index are examined.

Graphical Abstract

Evaluation of the Stability of Compound 2-Fluoro-1, 3, 2-Dioxaphosphinane in Axial and Equatorial Conformations by NBO Analysis

Keywords

Main Subjects

[1] A. T. Haglar, Quantum Derivative Fitting and Biomolecular Force Fields: Functional Form, Coupling Terms, Charge Flux, Nonbond Anharmonicity, and Individual Dihedral Potentials, J. Chem. Theory. Comput, 11 (2015) 5555-5572. https://doi.org/10.1021/acs.jctc.5b00666.
[2] L. A. Rubenstein, R. J. Zauhar, R. G. Lanzara, Molecular dynamics of a biophysical model for β2-adrenergic and G protein-coupled receptor activation, J. Mol. Graph. Model, 25 (2006) 396-409. https://doi.org/10.1016/j.jmgm.2006.02.008.
[3] I. V. Alabugin, Stereoelectronic Interactions in Cyclohexane, 1, 3- Dioxane, 1, 3- Oxathiane, and 1, 3-Dithiane:  W-Effect, σC-X ↔ σ*C-H Interactions, Anomeric Effect What Is Really Important?, J. Org. Chem, 65 (2000) 3910-319.
https://doi.org/10.1021/jo991622+.
[4] I. V. Alabugin, K. M. Gilmore, P. W. Peterson, Hyperconjugation ,Rev. Comp. Mol. Sci, 1 (2011) 109-141. https://doi. /org 10.1002/wcms.6.
[5] E. Juaristi, Y. Bandala, Chapter 2 - Anomeric Effect in Saturated Heterocyclic Ring Systems, Adv. Hetrocycl. Chem, 105 (2012) 189-222. https://doi.org/10.1016/B978-0-12-396530-1.00002-4
[6] E. Juaristi, R. Notario, Theoretical Evidence for the Relevance of n (F) → σ*(C–X) (X = H, C, O, S) Stereoelectronic Interactions, J. Org. Chem., 81 (2016) 1192-1197. https://doi.org/10.1021/acs.joc.5b02718
[7] Y. Mo, Computational evidence that hyperconjugative interactions are not responsible for the anomeric effect, Nat. Chem., 2 (2010) 666-671. https://doi.org/10.1038/nchem.721.
[8] K. B. Wiberg, W. F. Bailey, K. M. Lambert, Z. D. Stempel, The Anomeric Effect: It’s Complicated, J. Org. Che., 83 (2018) 5242-5255. https://doi.org/10.1021/acs.joc.8b00707
[9] C. Wang, F. Ying, W. Wu, Y. Mo, Sensing or No Sensing: Can the Anomeric Effect Be Probed by a Sensing Molecule, J. Am. Chem. Soc, 133 (2011) 13731-13736. https://doi.org/10.1021/ja205613x
[10] E. J. Cocinero, P. Carcabal, T. D. Vaden, J. P. Simons, B. G. David, Sensing the anomeric effect in a solvent-free environment, Nature, 469 (2011) 76-79. https://doi.org/10.1038/nature09693
[11] M. P. Freitas, The anomeric effect on the basis of natural bond orbital analysis, Org. Bimol. Chem, 11 (2013) 2885-2890. https://doi.org/10.1039/C3OB40187A
[12] E. Juaristi, R. Notario, Theoretical Examination of the S–C–P Anomeric Effect, J. Org. Chem, 80 (2015) 2879-2883. https://doi.org/10.1021/jo5029425
[13] A. R. Nekoei, M. Vatanparast, Generalized anomeric effect of α-chloro-O-oxime ethers; influence of various substitutions by DFT, NBO and AIM studies, Comput. Theor. Chem, 1029 (2014) 13-20. https://doi.org/10.1016/j.comptc.2013.12.004
[14] L. E. Mrtins, M. P. Freitas, Anomeric effect plays a major role in the conformational isomerism of fluorinated pnictogen compounds, J. Phys. Org. Chem, 21 (2008) 881-885. https://doi.org/10.1002/poc.1397.
[15] MJ. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, et al. P a g e | 171 A.D., O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09. Revision A.02 ed.; Gaussian, Inc.: Wallingford CT, 2009.
[16] M. Loipersberger, L. W. Bertels, J. Lee, M. Head-Gordon, Exploring the Limits of Second- and Third-Order Møller–Plesset Perturbation Theories for Noncovalent Interactions: Revisiting MP2.5 and Assessing the Importance of Regularization and Reference Orbitals, J. Chem. Theory Comput, 17 (2021) 5582–5599. https://doi.org/10.1021/acs.jctc.1c00469.
[17] L. Lu, Can B3LYP be improved by optimization of the proportions of exchange and correlation functionals?, Qantum. Chem, 115 (2015) 502-509. https://doi.org/10.1002/qua.24876
[18] Version 6 Gauss View, R. Dennington, T.A. Keith, J. M. Millam, Semichem Inc., Shawnee Mission, KS. 2016. 
[19] L. C. Wright and M. T. Oliver-Hoyo, Supporting the Teaching of Infrared Spectroscopy Concepts Using a Physical Model, J. Chem. Educ, 96 (2019) 1015-1021.  https://doi.org/10.1021/acs.jchemed.8b00805
[20] N. Hayashi, T. Ujihara, H. Ikada, Interpretation of anomeric effect in 2-hydroxytetrahydropyrans based on extensive bond interactions, Tetrahedron, 76 (2020) 130919-130946. https://doi.org/10.1016/j.tet.2019.130919
[21] Z. Mokhayeri, R. Fazaeli, Quantum Chemical Relationship between Generalized Anomeric Effect and Thermodynamic Parameters in M2Cl2 (M = O, S, Se), Russ. J. Inorg. Chem, 64 (2019) 1819-1824. https://doi.org/10.1080/00268976.2016.1143984.
[22] Z. Mokhayeri, Investigation of Thermodynamic Properties and Hardness by DFT Calculations of S2X2 isomers (X: F, Cl, Br) ‏, Chem. Methodol, 6 (2021) 52-58. https://doi.org/10.22034/chemm.2022.1.5.
[23] M. F. Perez and J. L. Gazquez, Electronegativities of Pauling and Mulliken in Density Functional Theory, J. Phys. Chem. A., 123 (2019) 10065-10071. https://doi.org/10.1021/acs.jpca.9b07468
[24] E. Chamorro, P. K. Chattaraj and P. Fuentealba, Variation of the Electrophilicity Index along the Reaction Path, J. Phys. Chem. A., 107 (2003) 7068-7072. https://doi.org/10.1021/jp035435y.
[25] Becke, Axel D., Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys., 98 (1993) 5648, https://doi.org/10.1063/1.464913
[26] Z. Mokhayeri, Evaluation of axial and equatorial conformation stabilization of compounds 1, 3-dioxane by DFT, Iran. J. Org. Chem, 13 (2021) 3209-3213.