Document Type : Review Article


1 Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India.

2 Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.


Organic compounds have plays vital role in biological chemical activities and also use for increase people's quality of life. Semicarbazide and thiosemicarbazide are sulfur and nitrogen-containing organic compounds with diverse biological activities. They are Schiff’s bases formed by the condensation product of aldehydes or ketones with different amines. These derivatives are urea and thiourea derivatives depend on the attached aldehydes or ketones moiety. Antibacterial, antifungal, anticonvulsant, antitubercular, antimalarial, anticancer, analgesic, antipyretic, anti-inflammatory, antioxidant, antiviral, and other biological activities are all possible with semicarbazide and thiosemicarbazide derivatives. The addition of hydrazides to various isocyanates and isothiocyanates is one of the most convenient methods for the synthesis of semicarbazide and thiosemicarbazide derivatives, but they also used as a starting material for the synthesis of various Schiff’s bases, metal chelating complexes, and anticorrosion agents. Various biological activities of semicarbazide and thiosemicarbazide derivatives, and their uses in the drug development phases, are the subject of this study.

Graphical Abstract

Chemical and Biological potentials of semicarbazide and thiosemicarbazide derivatives and their metals complexes


  • Semicarbazides and thiosemicarbazides are sulfur and nitrogen-containing organic compounds with diverse biological activities.
  • Semicarbazides and thiosemicarbazides and its metal complexes possess antimicrobial, anticancer, anticonvulsant, antitubercular, antimalarial, analgesic, antipyretic, anti-inflammatory, antioxidant, antiviral, and other biological activities.
  • Various metal complexes containing different transition metals such as Ni(II), Cu(II), and Pd (II) of semicarbazide, thiosemicarbazide derivatives are used as bioactive compounds and chemical applications.


Main Subjects

  • Jalilian, S. Sattari, M. Bineshmarvasti, M. Daneshtalab, A.R. Shafiee. Synthesis and in vitro antifungal and cytotoxicity evaluation of substituted 4,5-dihydronaphtho[1,2-d][1,2,3]thia(or selena)diazoles. II Farmaco, 58 (2003) 63-68.
  • R. Shafiee, B. Jalilian. Selenium heterocycles XLIV. Syntheses of 8,9-dihydro-1,2,3-thiadiazolo[4,5-a]-4,7-dihydroxynaphthalene and 1,2,3-selenadiazolo[4,5-a]-4,7-dimethoxynaphthalene. J Heterocyc Chem., 37 (2000), 1325-1327.
  • Varvaresou, A. Siatra-Papastaikoudi, D. Tsotinis, A. Tsantili-Kakaulidou, V.A. Amvakides. Synthesis, lipophilicity and biological evaluation of indole-containing derivatives of 1,3,4-thiadiazole and 1,2,4-triazole. Farmaco. 53 (1998) 320-326.
  • Bineshmarvasti, M. Sharifzadeh, A.R. Jalilian, K. Soltaninejad, A. Shafiee. Syntheses and anticonvulsant activity of N4-substituted triazolylthiazoles. Daru., 11 (2003) 74-78.
  • Siwek, J. Stefanska, K. Dzitko, A. Ruszezak. Antifungal effect of 4-arylthiosemicarbazides against Candidaspecies. Search for molecular basis of antifungal activity of thiosemicarbazide derivatives J. Mol. Model, 18 (2012), 4159-4170.
  • Del Corso, U.C. Mura. Thiol dependent oxidation of enzymes: the last chance against oxidative stress. IntJBiochem., 26, (1994) 745-750.
  • B. Freedman. How many distinct enzymes are responsible for the several cellular processes involving thiol:protein-disulphide interchange?.  FEBS Lett., 97 (1979), 201-210.
  • Gopalakrishnan, P. Sureshkumar, J. Thanusu, V. Kanagarajan. Unusual formation of N-Hydroxy-3,3-dimethyl-2,6-diarylpiperidin-4-one and its thiosemicarbazide derivative-synthesis and antimicrobial activity. Pharm. Chem. J., 42 (2008) 271-276.
  • Yogeeswari, D. Banerjee, P. Bhat, A. Thomas, M. Srividya, D. Shriram. Novel isatinyl thiosemicarbazones derivatives as potential molecule to combat HIV-TB co-infection. Eur. J. Med. Chem., 46 (2011) 106-121.
  • Siddiqui, O. Singh. Antibacterial activity of some 4-N-substituted thiosemicarbazides and thiosemicarbazones. Indian J. Pharm. Sci., 65(2003) 423-425.
  • Chipeleme, J. Gut, B.P.J. Rosenthal, K. Chibale. Design, synthesis, and antimalarial activity of structural chimeras of thiosemicarbazone and ferroquine analogues. Bioorg. Med. Chem., 17 (2007), 6434-6438.
  • Shipman Jr, S.H. Smith, J.C. Drach, D.L. Klayman. Antiviral Activity of 2-Acetylpyridine Thiosemicarbazones Against Herpes Simplex Virus. Antimicrob. Agents. Chemother., 19 (1981), 682-685.
  • M. Thomas, A.D. Naik, M. Nethaji, A.R. Chakravarty. Synthesis, crystal structure and photo-induced DNA cleavage activity of ternary copper(II)-thiosemicarbazone complexes having heterocyclic bases. Inorg. Chim. Acta, 357 (2004) 2315-2323.
  • Beraldo, D. Gambino. The wide pharmacological versatility of semicarbazones, thiosemicarbozones and their metal complexes. Mini. Rev. Med. Chem., 2004 (2004) 31-39.
  • B. Ferrari, F. Bisceglie, G.G. Fava, G. Pelosi, P. Tarasconi, R. Albertini, S. Pinelli. Synthesis, characterization and biological activity of two new polymeric copper (II) complexes with α-ketoglutaric acid thiosemicarbazone. J. Inorg. Biochem., 89(2002) 36-44.
  • S. Seleem, B.A. El-Shetary, S.M.E. Khalil, M. Mostafa, M. Shebl. Structural diversity in copper(II) complexes of bis(thiosemicarbazone) and bis(semicarbazone) ligands. J. Coord. Chem., 58 (2005) 479-493.
  • Zamani, K. Faghihi, S. Bagheri, M. Kalhor. Structural diversity in copper(II) complexes of bis(thiosemicarbazone) and bis(semicarbazone) ligands. Indian J. Chem., 2004, 43B, 2716-2718.
  • M. Reis, D.S. Pereira, R. Oliveira, L.F. Kneipp, A. Echevarria. Microwave-Assisted Synthesis of New N1,N4-Substituted Thiosemicarbazones. Molecules, 16(2011), 10668-10684.
  • P. Tenório, A. J. S. Góes, J. G. De Lima, A. R. De Faria, A. J. Alves, and T. M. De Aquino, Thiosemicarbazones: preparation methods, synthetic applications and biological importance. Quimia Nova., 2005, 28(2005), 1030-37.
  • Mirta, D. Ivica, C. Marina, M. Dubravka. Two thiosemicarbazones derived from salicylaldehyde: very specific hydrogen-bonding interactions of the N-HS C type. Acta. Crys., C64 (2008) 0570-0573.
  • Chandra, L.K. Gupta. Electronic, EPR, Magnetic and mass spectral studies of mono and homo binuclear Co(II) and Cu(II) complexes with a novel macrocyclic ligand. Spectrochim Acta A, 2005, 62, 1102-1106.
  • R. Kumar, M. Ayesha. Preparation and Characterization of Ni(II) and Mn(II) Complexes of Semicarbazone and Thiosemicarbazone of m- Hydroxy Benzaldehyde and p- Hydroxy Benzaldehyde. Res. J. Chem. Environ., 15 (2011), 5.
  • Salah, B.A., Kandil, A.T., Abd El-Nasser, M.G. A Therapeutic Journey of Semicarbazide and Thio Semicarbazide Derivatives and their Transition Metals Complexes: Mini Review. Res & Rev: J Chem., 7(2018) 38-48.
  • A. Jakupec, M. Galanski,   V.B. Arion,   C.G. Hartinger,  B.K. Keppler. Antitumour metal compounds: more than theme and variations. Dalton Trans., 2008, 183-194.
  • Yang, M. Guo. Interactions of organo-metallic anticancer agents with nucleotides and DNA. Coord. Chem. Rev., 185 (1999), 189.
  • K. Hadjikakou, N. Hadjiliadis. Antiproliferative and antitumor activity of organotin compounds. Coord. Chem. Rev., 253 (2009), 235.
  • Strohfeldt, M. Tacke. Bioorganometallic fulvene- derived titanocene anticancer drugs. Chem. Soc. Rev., 37 (2008) 1174.
  • M. Abeysinghe, M.M. Harding. Antitumour bis (cyclopentadienyl) metal complexes: titanocene and molybdocene dichloride and derivatives. Dalton Trans, 2007, 3474.
  • G. Hartinger, P.J. Dyson. Bioorgano-metallic chemistry from teaching paradigms to medicinal applications. Chem. Soc. Rev., 38 (2009) 391.
  • C. Cardiaa, S. Distinto, E. Maccioni, A. Plumitallo, M. Saddi, M.L. Sanna, M. Saddi, A. Delogu. Isonicotinoylhydrazothiazoles and isonicotinoyl-N4-substituted thiosemi-carbazides: synthesis, characterization, and anti-mycobacterial activity. J. Heterocycl. Chem., 43 (2006), 1337-1342.
  • Küçükgüzel, A. Kocatepe, E. De Clercq, F. Şahin, M. Güllüce. Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. Eur. J. Med. Chem., 41(2006), 353–359.
  • Plech, M. Wujec, A. Siwek, U. Küçükgüzel Kosikowska, A. Malm. Synthesis and antimicrobial activity of thiosemicarbazides, s-triazoles and their Mannich bases bearing 3-chlorophenyl moiety. Eur. J. Med. Chem., 46(2011), 241-248.
  • Sheikhy, A.R. Jalilian, A. Novinrooz, F. Motamedi-Sedeh. Synthesis and in vitro antibacterial evaluation of some thiosemicarbazides and thiosemicarbazones. J. Biomed. Sci. & Engineer., 5 (2012) 39-42.
  • Umadevi, K. Deepti, I. Srinath, G. Vijayalakshmi, M. Tarakaramji. Synthesis and in-vitro Antibacterial Activity of some new Urea, Thiourea and Thiosemicarbazide Derivatives. Int. J. Pharm. & Pharm. Sci., 2012, 4(3), 379-383.
  • Kshirsagar, M.P. Toraskar, V.M. Kulkarni, S. Dhanashire, V. Kadam. Microwave assisted synthesis of potential anti infective and anticonvulsant thiosemicarbazones. Int. J. ChemTech Res., 1(2009), 696-701.
  • L. Vasoya, D.J. Paghdar, P.T. Chovatia, H.S. Joshi. Synthesis of some new thiosemicarbazide and 1,3,4-thiadiazole heterocycles bearing Benzo [b] thiophene nucleus as a potent antitubercular and antimicrobial agents. J. Sci., 16(2005), 33-36.
  • L. Barry. The antimicrobial susceptibility test: Principle and practice. IIIuslea and Febiger (Eds.), Philadelphia, USA, 180, Biol. Abstr., 64(1977), 25183.
  • Singhal, S., Arora, S., Agarwal, S., Sharma, R., Singhal, N. A review on potential biological activities of thiosemicarbazides. World J. Pharm. & Pharm. Sci., 2013, 2(6), 4661-4681.
  • Jain, P.C., Prakash, N.P.S., Kinthada, M.M.S., Jain, M.C. Synthesis of 4-benzylamido-thiosemicarbazide and its thiosemicarbazones vis-à-vis their antifungal activity. J. Pharm. & Technol., 2010, 2(2010), 726-734.
  • Li, Z.C., Chen, L.H., Yu, X.J., Hu, Y.H., Song, K.K., Zhou, X.W., Chen, Q.-X. Inhibition kinetics of chlorobenzaldehyde thiosemicarbazones on Mushroom tyrosinase. Agric. Food Chem., 2010, 58 (2010), 12537-12540.
  • Negi, S. Nandy, A. Mahato. Antimicrobial activity of different thiosemicarbazone compounds against microbial pathogens. Int. Res. J. Phar., 3(2012), 352.
  • K. Haraguchi, A.A. Silva, G.J. Vidotti, V.P. dos Santos, F.P. Garcia, R.B. Pedroso, C.V. Nakamura, C.M.A. De Oliveira, C.C. Da Silva. Antitrypanosomal activity of novel benzaldehyde-thiosemicarbazone derivatives from Kaurenoic acid. Molecules, 2011, 16, 1166-1180.
  • C.L. Leite, R.S. de Lima, D.R.M. Moreira, M.V. de O. Cardoso, C.G. de Brito Ana, L.M.F. dos Santos, M.Z. Hernandes, A.C. Kiperstok, R.S. de Lima, M.B.P. Soares. Synthesis, docking and in vitro activity of thiosemicarbazones, aminoacyl-thiosemicarbazides and acyl-thiazolidones against Trypanosoma cruzi. Bioorg. & Med. Chem., 2006, 14, 3749-3757.
  • Baltz, D. Baltz, C. Giroud, J. Crockett. Cultivation in a semi defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodhesienseet T. gambiense. EMBO J., 4(1985), 1273.
  • Hirumi, H., and Hirumi, K. Axenic culture of African Trypanosome bloodstream forms. Today, 1994, 10(1994) 80-84.
  • Raz, M. Iten, Y. Grether-Bühler, R. Kaminsky R. Brun. The Alamar cylamino BlueR assay to determine drugs sensitivity of African trypanosomes (T.b rhodhesiense and T.b gambiense) in vitro. Acta Trop., 68(1997) 139-147.
  • R. Fatondji, F. Gbaguidi, S. Kpoviessi, J. Bero, V. Hannaert, J. Quetin-Leclercq, J. Poupaert, M. Moudachirou, G.C. Accrombessi. Synthesis, characterization and trypanocidal activity of some aromatic thiosemicarbazones and their 1,3,4-thiadiazolines derivatives. Afr. J. Pure & Appl. Chem., 5(2011) 59-64.
  • Renata, A.S., Echevarria, A., Myrtes, S.S., Rosa, T.P., Lev, R.M.M., Wellingon, S.S., Machado, G.M., Marilene, M.C., Leonor, L.L. Evaluation of thiosemicarbazones and semicarbazones as potential agents anti-trypnosoma cruzi. parasitol., 129(2011) 381-387.
  • L. Klayman, J.P. Scovill, J.F. Bartosevich, J. Bruce. 2-Acetylpyridine Thiosemicarbazones.1-[l-(2-Pyridyl)ethyl]-3-thiosemicarbazides as Potential Antimalarial Agents. J. Med. Chem., 26 (1983) 35-39.
  • Alagarsamy, P. Parthiban. Synthesis and antibacterial activity of some novel 1-(4-oxo-3-butyl-3H-Quinazolin-2-yl)-4-(substituted) thiosemicarbazides. Rasăyan J. Chem., 4(2011) 736-743.
  • Rastogi, S., Rastogi, H. An efficient synthesis of some substituted piperidin-4-one thiosemicarbazone derivatives as potential anticonvulsant under microwave irradiation. J. Chem., 2010, 49B (2010), 547-553.
  • Soliman, M. Gabr, M.S. Abouzeithar, F.M. Sharabi. Formation of thiazoles, thiazines and thiadiazines from 1-phthalazine thiosemicarbazides as potential anticonvulsants. J. Pharm. Sci., 1981, 70(1), 94–96.
  • Carmichael, W. DeGraff, A. Gazdar, J. Minna, J. Mitchell. Evaluation of a tetrazoliumbased semiautomated colorimetric assay: Assessment of chemosensitivity testing. J. Cancer Res., 47 (1987) 936-942.
  • Siwek, P. Staczek, M. Wujec, K. Bielawski, A. Bielawska, P. Paneth. Cytotoxic effect and molecular docking of 4-ethoxycarbonylmethyl-1-(piperidin-4-ylcarbonyl)-thiosemicarbazide -a novel topoisomerase II inhibitor. J. Mol. Model., 19(2013), 1319-1324.
  • J. Zhang, Y. Qian , D.D. Zhu, X.G. Yang, H.L. Zhu. Synthesis, molecular modeling and biological evaluation of chalcone thiosemicarbazide derivatives as novel anticancer agents. Eur. J. Med. Chem., 2011, 46, 4702-4708.
  • Padhye, Z. Afrasiabi, E. Sinn, J. Fok, K.N. Mehta. Antitumor Metallothiosemicarbazonates: Structure and Antitumor Activity of Palladium Complex of Phenanthrenequinone Thiosemicarbazone. Rath. Inorg. Chem., 44 (2005) 1154–1156.
  • Y. Lukmantara, D.S. Kalinowski, N. Kumar, D.R. Synthesis and biological evaluation of substituted 2-benzoylpyridine thiosemicarbazones: Novel Structural-activity relationships underpinning their anti-proliferative and chelation efficacy. Richardson. Bioorg. Med. Chem. Lett., 2013, 23(2013), 967-674.
  • Mao-chin, L. Tain-shun, G. Joseph, C. Ann, C.S. Alan. Synthesis and biological activity of 3- and 5- amino derivatives of pyridine-2-carboxaldehyde thiosemicarbazone. Med. Chem. Lett., 1996, 39(13), 2586-2593.
  • P. Barcelos, R. de Lima Portella, E.J.F. da Rosa. A. de Souza Fonseca, L. Bresolin, V. Carratu, F.A. Soares, N.V. Barbosa. Thiosemicarbazone derivate protects from AAPH and Cu2+-induced LDL oxidation. Life Sci., 89(2011), 20-28.
  • Ahmed, K. Yasmein, H. Heba, A. Ali. Anti-oxidant, anti-microbial and theoretical studies of the thiosemicarbzone derivative Schiff base. Org. Med. Chem. Lett., 2012, 2, 4.
  • AL-Attas. Separation and Spectrophotometric Determination of Platinum (IV) in Natural Waters, Simulated Samples and Prepared Solid Complexes using 1-Phenyl-4 Ethylthiosemicarbazide. Jordan J. Chem., 2007; 2(2):183-197.
  • Park, N.-D. Sung. 3D-QSAR analysis and molecular docking of thiosemicarbazone analogues as a potent tyrosinase inhibitor. Bull. Korean Chem. Soc., 32(2011), 1241-1248.
  • D. Cramer, D.E. Patterson, J.E. Bunce. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 110 (1988) 5959–5967.
  • Klebe, U. Abraham, T. Mietzner. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem., 37(1994), 4130–4146.
  • Siwek, A., Staczek, P., Wujec, M., Stefànska, J., Kosikowska, U., Malm, A., Jankowski, S., Paneth, P. Biological and docking studies of topoisomerase IV inhibition by thiosemicarbazides. Mol. Model, 17 (2011), 2297-2303.
  • T. Baviskar, C. Madaan, R. Preet, P. Mohapatra, V. Jain, A. Agarwal, S.K. Guchhait, C.N. Kundu, U.C. Banerjee, P.V. Bharatam. N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIα and induce apoptosis in GI/S phase. J. Med. Chem., 54 (2011), 5013-5030.
  • Preveena. Ph.D. Thesis. Department of Chemistry, Jain University, Bangalore, 2017.
  • Bharti, K. Hussain, M.T.G. Garza, D.E.C. Vega, D.D.M. Cardenas, F. Naqvi. Synthesis and in vitro antiprotozoal activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2002, 12, 3475-3478.
  • D. Hitesh, M.D. Savani, C. Erick. Synthesis of some novel thiosemicarbazone derivatives having anti-cancer, anti-HIV as well as anti-bacterial activity. Ind. J. Chem., 52B(2013) 535-545.
  • A. Hussein, M.A. Iqbal, M.I. Umar, R.A. Haque, T.S.Guan. Synthesis, structural elucidation and cytotoxicity of new thiosemicarbazone derivatives. Arab. J. Chem., 12(2019) 3183-3192.
  • Ratchanok, P. Supaluk, R. Somsak. Synthesis, Cytotoxic, Anti-malarial activities of Benzoyl thiosemicarbazone analogs of isoquinoline and related compounds. Molecules, 15(2010) 988-996.
  • M. Sheetal, R.K. Ravindra, T. Tasneem, Y.K. Mahadevappa. An efficient one-pot cyclization of quinoline thiosemicarbazones to quinolines derivatized with 1, 3, 4-thiadiazole as anticancer and antitubercular agents. Med. Chem. Res., 21 (2021), 185–191.
  • S. Hossain, C.M. Zakaria, M. Kudrat-E-Zahan, B. Zaman. Synthesis, Spectral and Thermal Characterization of Cu(II) Complexes with two New Schiff Base Ligand towards Potential Biological Applications. Der Chemica Sinica, 8(2017) 380-392.
  • Chandra, S. Raizada, R. Verma. Synthesis, characterisation and biological activities of copper(II) complexes with semicarbazones and thiosemicarbazones. J. Chem. Pharm. Res., 4 (2012), 1612-1618.
  • B. Said, H. Abdelrazek, R.F. Elezaby. Synthesis and Biological Activity of Some 2,3- Diphenylindole derivatives. Res. & Rev.: J. Chem., 4(2015), 1-15.
  • Masoumeh, K.-N. Ali, Z. Kamiar, S. Razieh, F. Zahra, J. Maryam, P. Hasti, K. Soghra Synthesis of Some Novel Semicarbazone and Thiosemicarbazone Derivatives of Isatin as Possible Biologically Active Agents. J. Pharm. Res. Inter., 1(2017) 1-13.
  • Konstantinovic, S.S., Radovanovic, B.C., Sovilj, S.P., and Stanojevic, S. Antimicrobial activity of some isatin-3- thiosemicarbazone complexes. Serb. Chem. Soc.,73 (2008) 7-13.
  • Čobeljić, B., Pevec, A., Turel, I., Swart, M., Mitić, D., Milenković, M., Marković, I., Jovanović. M., Sladić, D., Jeremić, M., Anđelković, K. Crystal Structure of C10H16ClN3O3. Inorganica Chimica Acta, 2013, 404, 5-12.
  • Ho, W.Y. Lee, K.J.T. Koh, P.P.F. Lee, Y.-K. Yan. Rhenium(I) tricarbonyl complexes of salicylaldehyde semicarbazones: Synthesis, crystal structures and cytotoxicity. J. Inorg. Biochem., 2013, 119 (2013), 10-20.
  • S. Chandra, J.A.S.J. Prasanna Kumari, P.N.V.V.L. Prameela Rani, Y. Sunandamma. Anthraquinone Benzylthiosemicarbazone Cr (III) Complex as a Potential AntiCancer Drug-Characterization and Activity. Ind. J. Adv. Chem. Sci., 2(2013), 32-37.
  • Verma. Synthesis and characterisation of manganese(ii) complexes with semicarbazide and thiosemicarbazide based ligands. Int. J. Pharm. Sci. & Res., 8 (2017) 1504-1513.
  • Afrasiabi, E. Sinn, W. Lin, Y. Ma, C. Campana, S. Padhye. Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: Synthesis, structure, spectroscopy, and biological activity. J. Inorg. Biochem., 9(2005) 1526.
  • Srivastava, R.M. Singh. Vilsmeier-Haack reagent: A facile synthesis of 2-chloro-3-formylquinolines from N-arylacetamides and transformation into different functionalities, Indian J. Chem., 44B (2005) 1868-1875.
  • M. Zen, F. Chen, F.M. Liu. Synthesis and Structure Characterization of Thiazolyl-Pyrazoline Derivatives Bearing Quinoline Moiety, Phosphorus, Sulfur, and Silicon and the Related Elements. 187(2012) 421-431.
  • B. Sangani, N.M. Shah M.P. Patel, R.G. Patel. Microwave-assisted synthesis of novel 4H-chromene derivatives bearing 2-aryloxyquinoline and their antimicrobialactivity assessment. Med. Chem. Res., 22 (2013) 3831–3842.
  • C. Mungra, M.P. Patel, D.P. Rajani, R.G. Patel. Synthesis and identification of b-aryloxyquinolines and their pyrano[3,2-c] chromene derivatives as a new class of antimicrobial and antituberculosis agents. Eur. J. Med. Chem., 46(2011) 4192-4200.
  • Marganakop, S.B., Kamble, R.R., Taj. T., Kariduraganvar, M.Y. An efficient one-pot cyclization of quinoline thiosemicarbazones to quinolines derivatized with 1,3,4-thiadiazole as anticancerand anti-tubercular agents. Chem. Res., 21(2012),185–191.
  • R. Bhat, T.A. Azam, I. Choi, F. Athar. 3-(1,3,4-Thiadiazole-2-yl)quinoline derivatives: Synthesis, characterization and anti-microbial activity. Eur. J. Med. Chem., 46(2011) 3158- 3166.