Document Type : Original Research Article

Authors

Department of Physics, Devanga Arts College, Aruppukottai, Tamil Nadu, India.

10.22034/ajcb.2021.260742.1072

Abstract

The present work investigates the structural and chemical studies on4-(carboxyamino)-3-guanidino-benzoic acid using quantum computational methods. The revamped geometric structure and its quantum chemical parameters were obtained throughDFT-B3LYP/6-311G &HF/6-31G method. Further inter and intra molecular interactions, electrophilic, nucleophilic and chemical reactivity sites are obtained by molecular electrostatic potential, HOMO-LUMO and Global chemical reactivity descriptors. Mulliken atomic charges were reported with NBO analysis. Thermodynamic property and Non-Linear Optical properties of the title compound are also reported. The calculated quantum chemical parameters show high reactivity and the dipole moment was high enough to induce nonlinear characteristics which are needed for applications in optoelectronic devices. The molecular docking study of the compound is carried out against active sites of four proteins. The periplasmic binding protein 1US5 is highly essential to resist Agrobacterium tumefaciens. In our docking analysis, the protein 1US5 shows the best results than other three proteins which could be used for further analysis. Our findings provide further insight into the physical and chemical properties of the title molecule as well as point to prospects for its application in future studies.

Graphical Abstract

Computational analysis and molecular docking study of 4-(carboxyamino)-3-guanidino-benzoic acid

Highlights

·         Based on DFT calculations 4-(carboxyamino)-3-guanidino-benzoic acid have been studied.

·         Electronic and Optical properties have been investigated in detail.

·         Molecular docking study confirms the biological activity of the compound.

·         From docking study, glutamine receptor 1US5shows great stability in this conformer.

Keywords

References
[1] S.I. Akberova, New Biological Properties of                  p-Aminobenzoic acid. Biology Bulletin, 29 (2002) 390–393.
[2] O. Kornfeld, B.P. Nichols, Vitamin B3 confers resistance to sulfa drugs in Saccharomyces cerevisiae. FEMS Microbiology Letters, 251 (2005) 137–141.
[3] S.I. Akberova, P.I. MusaevGalbinur, O.G. Stroeva, N.M. Magomedov, N.F. Babaev, A.P.Galbinur, Comparative evaluation of the antioxidant activity of para-aminobenzoic acid and emoxipin in the cornea and crystalline lens (an experimental study). VestnOftalmol, 117(4)(2001) 25-9.

[4] S. I.AkberovaP. I.MusaevGalbinurN. M.MagomedovKh. F.BabaevKh. M.GakhramanovO. G.Stroeva, Comparative assessment of antioxidant activity of para-aminobenzoic acid and emoxipin in retina.VestnOftalmol, 114(6) (1998) 39-44.

[5] Ignacy Z Siemion, PiotrStefanowicz,Periodical changes of amino acid reactivity within the genetic code. Curr Med Chem,27 (1992) 77-84. 
[6] A. Kluczyk, T. Popek, T. Kiyota, P. de Macedo, P. Stefanowicz, C. Lazar, Y.Konishi, Curr,Drug evolution: p-aminobenzoic acid as a building block.Med. Chem. 9 (2002)1871-1892.
[7]  J.H. Short, C.W. Ours, W.J. Ranus, Sympathetic nervous system blocking agents. V. Derivatives of isobutyl-, t-butyl-, and neopentylguanidine. J. Med. Chem.,11 (1968) 1120-1135.
[8] T. Satoh, M. Muramatu, Y. Ooi, H. Miyataka, T. Nakajima, M. Umeyama,Medicinal chemical studies on synthetic protease inhibitors, trans-4-guanidinomethylcyclohexanecarboxylic acid aryl esters. Chem. Pharm.Bull., 33 (1985) 647-654.
[9] Y. Miyamoto, H. Hirose, H. Matsuda, S. Nakano, M. Ohtani, M. Kaneko, K. Sishigaki, F. Nomura, H. Kitamura, Y. Kawashima, Analysis ofcomplement activation profile during cardiopulmonary bypass and its inhibition by FUT-175. Trans. Am. Soc. Artif. Int. Organs., 31 (1985) 508-511.
[10] K. Okumura, Y. Kiyohara, F. Komada, S. Iwakawa, M. Hiral, T. Fuwa, Improvement in wound healing by epidermal growth factor (EGF) ointment.Pharm. Res., 7 (1990) 1289-1293.
[11] I. Muramatsu, M. Oshita, K. Yamanaka, Selective alpha-2 blocking action of DG-5128 in a dog mesenteric artery and rat vas deferens. J.Pharmacol. Exp. Therap., 227 (1983) 194-198.
[12] S. Umezawa, Y. Takahashi,T. Usui, T. Tsuchiya, Total synthesis of streptomycin. J. Antibiot.,27 (1974) 997-999.
[13] S. Marriner, Anthelmintic drugs. Vet. Rec.,118 (1986) 181-184.
[14] B.L. Freedlander, F.A. French, Carcinostatic action of polycarbonyl compounds and their derivatives. Cancer Res.,18 (1958) 360-363.
[15] J.V. Greenhill, P. Lue, Amidines and guanidines in medicinal chemistry. Prog. Med. Chem.,30 (1993) 203-326.
[16] P. Vijayakumar, G. AnandhaBabu,  P. Ramasamy, Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-Toluidinium p-toluenesulphonate. Mater. Res. Bull., 957, (2012) 47
[17] M.Somac, A. Somac, B.L. Davies, M.G. Humphery, M.S. Wong, Third-order optical    nonlinearities of oligomers, dendrimers and polymers derived from solution Z-scan studies. Opt.Mater.,21(2003) 485-488.
[18] A. M.Petrosyan,Salts of l-histidine as nonlinear optical materials: a review.J. Cryst. Phys. Chem..33 (2010) 1.
[19] M.Drozd, Molecular structure and infrared spectra of guanidiniumcation A combined theoretical and spectroscopic study, Materials Science and Engineering, B136 (2007) 20-28.
[20] M. AlcoleaPalafox, J.L.Nunez, M.Gil, Theoretical quantum chemical study of benzoic acid: Geometrical parameters and vibrational wavenumbers.International Journal of Quantum Chemistry, 89 (2002) 1-24.
[21] C. Topacli, A. Topacli, Symmetry of NHN hydrogen bonds in solution.J. Mol. Struct. 644 (2003) 145.
[23] W. Jeremy Jones, The Infra-red spectrum and structure of guanidine.Transactions of the Faraday Society, 55 (1959) 524.
[24] M. AlcoleaPalafox, J.L. Nunez, M. Gil, Theoretical quantum chemical study of benzoic acid: Geometrical parameters and vibrational wavenumbers.International Journal of Quantum Chemistry, 89 (2002) 1-24.
[25] S. Ramalingam, E.I. John David, C. Ramachandra Raja, P.C. JobePrabakar, Spectroscopic [IR and Raman] Analysis and Gaussian Hybrid Computational Investigation- NMR, UV-Visible, MEP Maps and Kubo Gap on 2,4,6-Nitrophenol. J TheorComput Sci., 1 (2014) 2.
[26] G. Ranganathan RamkumaarShanmugam SrinivasanThirumazhisai Jambulingam BhoopathySethu GunasekaranJulie Charles, Jayaprakash Ramesh, Molecular structure, vibrational spectra, UV–vis, NBO, and NMR analyses on nevirapine using ab initio DFT methods.Journal of Theoretical and Applied Physics. 7 (2013) 1-14.
[27] N.M. O’ Boyle, A.L. tenderholt, K.M. Langer,cclib: a library for package-independent computational chemistry algorithms.J. Comput. Chem., 29 (2008) 839– 845
[28] S. Renuga, M. Karthikesan, S. Muthu, FTIR and Raman spectra, electronic spectra and normal coordinate analysis of N,N-dimethyl-3-phenyl-3-pyridin-2-yl-propan-1-amine by DFT method.SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy., 127 (2014) 439.
[29] T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, 2nd ed. Springer, New York, 2010, p. 20 & 243.
[30] M. Marinescu, A. Emandi, G. Marton, L.O. Cinteza, C. Constantinescu, Structural studies and optical nonlinear response of some pyrazole-5-ones. Nanoscience and Nanotechnology Letters, 7 (2015) 1-9.
[31] N. Wazzan, Z. Safi, DFT calculations of the tautomerization and NLO properties of 5-amino-7-(pyrrolidin-1-yl)-4-trimethyl-1,4-dihydro-1,6-naphthyridine-8-carbonitrile (APNC). Journal of Molecular Structure.,1143 (2017) 397-404.
[32] P.Agarwal, N.Choudhary, A. Gupta, P.Tandon, Density functional theory studies on the structure, spectra (FT-IR, FT-Raman, and UV) and first order molecular hyperpolarizability of 2-hydroxy-3-methoxy-N-(2-chloro-benzyl)-benzaldehyde-imine: Comparison to experimental data. Vib.Spectrosc., 134 (2013) 64.

[33] A.Alparone, Second Harmonic Generation, ElectroopticalPockels Effect, and Static First-Order Hyperpolarizabilities of 2,2′-Bithiophene Conformers: An HF, MP2, and DFT Theoretical Investigation. Adv. Phys. Chem., 1 (2013) 2013.

[34] Anujkumar, Mahesh Pal Singh Yadav, Computational studies of third-order nonlinear optical properties of pyridine derivative 2-aminopyridinium p-toluenesulphonate crystal.Pramana –J. Phys., 89 (2017)7.
[35] N. Moorthy, P.C. JobePrabakar, S. Ramalingam, S. Periandy,G.V. Pandian, Spectroscopic Investigation of the stimulus of NLO property on Acetone Thiosemicarbazone using computational (HF and DFT) confinement.J TheorComput Sci., 2(2015) 137.
[36] A.E. Reed, R.B. Weinstock, F. Weinhold, Natural population analysis.J. Chem.Phys., 83 (1985) 735-746.
[37] M. Govindarajan, M. Karabacak, Spectroscopic properties, NLO, HOMO–LUMO and NBO analysis of 2,5-Lutidine.Spectrochim.Acta Part A, 96 (2012) 421–435.
[38] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York, 1978.

[39] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 105 (1983) 7512–7516.

[40] R.G. Parr, W. Yang, Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
[41] E .Inkaya,  Synthesis, X-ray structure, FT-IR, NMR (13C/1H), UV– Vis spectroscopy, TG/DTA study and DFT calculations on 2-(benzo [d] thiazol-2-ylthio)-1-((1s,3s)-3-mesityl-3-methylcyclobutyl)ethan-1-one. J MolStruct.,1173 (2018) 148–156.
[42] D. Bakkiyaraj, S. Periandy, S. Xavier, Spectroscopic (FT-IR, FT-Raman, FT-NMR and UV–Vis) investigation on benzildioxime using quantumcomputational methods. J MolStruct.1108 (2016) 33–45.
[43] M.N. Arshad, A. Bibi, T. Mahmood, Synthesis, crystal structures andspectroscopic properties of triazine-based hydrazone derivatives; a comparative experimental-theoretical study.Molecules,20 (2015) 5851–5874.
[44] K. Rajalakshmi, S. Gunasekaran, S. Kumaresan, Density functional theory, comparative vibrational spectroscopic studies, highest occupied molecular orbital and lowest unoccupied molecular orbital analysis of Linezolid. Indian J Phys.,89 (2015) 525–538.
[45] T. Yadav, R. K. Sahu, V. Mukherjee, Molecular modeling and spectroscopic investigation of a neurotransmitter: Epinephrine.J. Mol. Struct., 1176 (2019) 94-109.
[46] S. Sevvanthi, S. Muthu, M. Raja, Molecular docking, vibrational spectroscopy studies of (RS)-2-(tert-butylamino)-1-(3-chlorophenyl)propan-1-one: A potential adrenaline uptake inhibitor.J. Mol. Struct., 1173 (2018) 251-260.
[47] V.Vijayakumar, A. Prabakaran, N. Radhakrishnan, S.Muthu, E. IsacPaulraj, Synthesis, characterization, spectroscopic studies, DFT and molecular docking analysis of N4, N4‟-dibutyl-3, 3‟-diaminobenzidine. J. Mol. Struct., 1179 (2019) 325-335.
[48] HalilGökce, SemihaBahçeli, A study of molecular structure and vibrational spectra of copper(II) halide complex of 2-(2′-thienyl)pyridine.SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 96 (2012) 139-147.
[49] N. Sundaraganesan, C. Maganathan, N. Dominic Joshua, P. Mani, P. Jayaprakash, FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 4-N, N′-dimethylamino pyridine. Spectrochim.Acta Part A, 71 (2008) 1134–1139.
[50] P. Govindasamy, S. Gunasekaran, S. Srinivasan, Molecular geometry, conformational, vibrational spectroscopic, molecular orbital and Mulliken charge analysis of 2-acetoxybenzoic acid.SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 130 (2014) 329–336.
[51] C.Oshiro, E.K.Bradely, J.Eksterowciz, E.Evensen, M.L. Lamb, J.K.Lanctot, S.Putta, R.Stanton, P.D.J. Grootenhuius,Performance of 3D-Database Molecular Docking Studies into Homology Models. J. Med. Chem. 47(2004) 764-767.
[52] K.C. Hsu, Y.F. Chen, S.R. Lin, J.M. Yang,iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12 (2011)1–11.