Document Type : Original Research Article

Author

Federal University of Technology Owerri, Department of Chemistry, PMB 1526, Imo State Nigeria

Abstract

The phytochemical composition of brown, green and red propolis collected from an apiary in Umudike, Abia State, Nigeria, was analyzed using the GC-FID technique. The phytochemical analysis results revealed that anthocyanin was the predominant photochemical, which occurred highest in red propolis (84.68 µg/g) followed by brown propolis (79.35 µg/g) but was not detected in green propolis. The brown propolis contained anthocyanin (79.35 µg/g), phenols (29.11 µg/g), flavanones (23.64 µg/g), naringenin (19.30 µg/g), flavan-3-ol (14.79 µg/g), proanthocyanins (12.79 µg/g) and steroids (10.35 µg/g) as major constituents while the green propolis showed significant presence of proanthocyanins (60.63 µg/g), lunamarin (19.90 µg/g), phenols (14.68 µg/g) and naringenin (10.64 µg/g). Proanthocyanins (69.18 µg/g), anthocyanin (84.68 µg/g), spartein (13.57 µg/g), phenols (46.99 µg/g), catechin (13.49 µg/g), and quinine (21.09 µg/g) were most abundant in the red propolis. The quantities of flavonoids / phenolic revealed may therefore be regarded as an important tool for recognizing the propolis color and floral type. This study has given scientific backing to attributing propolis color as one of the determinants of its floral origin and therapeutic properties. Propolis color should therefore be incorporated in future standardization and at the same time influence its acceptability by the consumers.

Graphical Abstract

Comparative Phytochemical Analysis of Brown, Green and Red Propolis from Umudike, Abia State Nigeria

Keywords

Main Subjects

  1. References

    1. A. E. Ejele, I. A. Duru, C. E. Ogukwe,  I. C. Iwu, Phytochemistry and Antimicrobial Potential of Basic Metabolites of Piper umbellatum, Piper guineense, Ocimum gratissimum and Newbouldia laevis extracts. Journal of Emerging Trends in Engineering and Applied sciences (JETEAS), 3(2)(2012) 309-314.
    2. I. A. Duru, C. E. Duru, F. C. Ibe C. A. Nweze, Comparison of Antimicrobial Properties of Chemically Modified and Unmodified Flower oil of Ageratum conyzoides. J. Chem. Soc. Nigeria, 38 (2) (2013) 88-90.
    3. I. A. Duru and C. E. Duru, Identification and Quantification of Phytochemicals from Carica papaya Linn (Caricaceae) Root Extract using GC-FID. J. Chem. Soc. Nigeria. 44 (7) (2019) 1291-1297.
    4. V. Bankova, Chemical diversity of propolis and the problem of standardization. Journal of Ethnopharmacology , 100 (2005) 114–117
    5. P.  Ristivojević, J. Trifković, F. Andrić, & D. Milojković-Opsenica, Poplar-type Propolis: Chemical Composition, Botanical Origin and Biological Activity. Nat. Prod. Communications 10(11)(2015). 1869–1876
    6. D. Kasote, A. Ahmad, W. Chen, S. Combrinck, A. Viljoen, HPTLC-MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from propolis. Phytochemistry Letters, 11 (2015) 326–331.
    7. D. M. Kasote, Propolis: A Neglected Product of Value in the Indian Beekeeping Sector. Bee World, 94(3)(2017) 80-83.
    8. L. G. Dias, A. P. Pereira, L. M. Estevinho, Comparative study of different Portuguese samples of propolis: Pollinic, sensorial, physicochemical, microbiological characterization and antibacterial activity. Food and Chemical Toxicology 50, (2012)4246–4253
    9. V. Bankova, M. Popova, B. Trusheva, Propolis volatile compounds: chemical diversity and biological activity: a review. Chemistry Central Journal 8(1) (2014) 1-8. doi: 10.1186/1752-153X-8-28. eCollection 2014
    10. P. Schnitzler, A. Neuner, S. Nolkemper, C. Zundel, H. Nowack, K. H. Sensch, J. Reichling, Antiviral activity and mode of action of propolis extracts and selected compounds. Phytotherapy Research, 24, (2010) S20–S28.
    11. A. Salatino, E W. Teixeira, G. Negri, D. Message, Origin and chemical variation of Brazilian propolis. Evidence-based complementary and alternative medicine, 2 (1) (2005) 33-38.
    12. A. Sabir, Prospect of using propolis in conservative dentistry and endodontic treatment (basic research vs clinical application). Dentika Dent. J., 18(2)(2017).  185-189. doi: 10.32734/dentika.v18i2.2028.
    13. S. I. Anjum, A. Ullah, K. A. Khan, M. Attaullah, H. Khan, H. Ali, M. A. Bashir, M. Tahir, M. J. Ansari, H. A. Ghramh, N. Adgaba, C. K. Dash, Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, 26 (7) (2019)1695-1703
    14. J.  Coelho, S. I. Falcão, N. Vale, L. B. Almeida-Muradian, M. Vilas-Boas, Phenolic composition and antioxidant activity assessment of southeastern and south Brazilian propolis. Journal of Apicultural Research, 56 (1) (2017). 21-31.
    15. V. Bankova, Chemical diversity of propolis makes it a valuable source of new biologically active compounds. Journal of ApiProduct and ApiMedical Science, 1(2009)23-28.
    16. M. Popova, B. Trusheva, S. Cutajar, D. Antonova, D. Mifsud, C. Farrugia,  V. Bankova, Identification of the Plant Origin of the Botanical Biomarkers of Mediterranean type Propolis. Natural Product Communications, 7 (5)(2012) 569–570.
    17. B. G. López, E. M. Schmidt, M. N. Eberlin, A. C. Sawaya, Phytochemical markers of different types of red propolis. Food Chemistry, 146(1) (2014)174-180.
    18. A. A. Adewumi and A. A. Ogunjinmi, The healing potential of honey and propolis lotion on septic wounds. Asian Pacific Journal of Tropical Biomedicine, 1 (2011) S55–S57.
    19. H. Shi, H. Yang, X. Zhang, L. Yu, Identification and quantification of phytochemical composition and anti-inflammatory and radical scavenging properties of methanolic extracts of Chinese propolis. Journal of Agricultural and Food Chemistry, 60 (2012) 12403–12410.
    20. J. C. Silva, S. Rodrigues, X. Feás, L. M. Estevinho, Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem. Toxicol., 50(2012) 1790–1795.
    21. R. M. K. Omar, J. Igoli, A. I. Gray, G. U. Ebiloma, C. Clements, J. Fearnley, R. Angeli E, Ebel, T. Zhang, P. H. Koning, D. G. Watson,  Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei. Phytochemical Analysis, 27 (2016)107-115.
    22. R. Omar, J. O. Igoli, T. Zhang, A. I. Gray, G. U. Ebiloma, C. J. Clements, J. Fearnley, R. E. Ebel, T. Paget, H. P. Koning , D. G. Watson, The Chemical Characterization of Nigerian Propolis samples and Their Activity Against Trypanosoma brucei. Scientific Reports, 7(2017)923
    23. E. Talla, N. A. Tamfu, S. I. Gade, L.  Yanda, T. J. Mbafor, S. Laurent, et al. New mono-ether of glycerol and triterpenes with DPPH radical scavenging activity from Cameroonian propolis. Nat Prod Res., 01 (2016). 1–12.
    24. A. A. Mahamat, J. N. Nyemb, I. S. Gade, A. T. Ngenge, E. Talla, H. Céline, L. Sophie, J. T. Mbafor,  A New fatty acid and some triterpenoids from propolis of Nkambe (North-West Region, Cameroon) and evaluation of the antiradical scavenging activity of their extracts. De Gruyter.  Open Chem., 18 (2020).  239–243
    25. V. Bankova, D. Bertelli, R. Borba, B. J. Conti, I. B. Cunha, C. Danert, M. N. Eberlin, S. I Falcão, M. I. Isla, M. I. Moreno, G. Papotti, M. Popova, K. B. Santiago, A. Salas, A. C. Sawaya, N. V. Schwab, J. M. Sforcin, M. Simone-Finstrom, M. Spivak, B. Trusheva, M. Vilas-Boas, M. Wilson, C. Zampini, Standard methods for Apis mellifera propolis research. Journal of Apicultural Research, 58(2)(2019) 1-49.
    26. C. E. Duru, Mineral and Phytochemical Evaluation of Zea mays Husk. Scientific African, 7(2020)2468-2276,
    27. M. Hayat, M. Abbas, F. Munir, M. Q. Hayat, R. Keyani, Rabia Amir, Potential of plant flavonoids in pharmaceutics and nutraceutics, J Biomol Biochem, 1(1)(2017)12-17.
    28. Z. Cui-ping, H. Shuai, W. Wen-ting, P. Shun, S. Xiao-ge, L. Ya-jing, H. Fu-liang, Development of high-performance liquid chromatographic for quality and authenticity control of Chinese propolis. J Food Sci., 79(7) (2014)C1315-22.
    29. V. C. Toreti, H. H. Sato, G. M. Pastore, Y. K. Park, Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid Based Complement Alternat Med. (2013) 697390.  https://doi.org/10.1155/2013/697390
    30. G. Beecher, Proanthocyanidins: Biological Activities Associated with Human Health. Archives of physiology and biochemistry, 42 (2004)2-20. 10.1080/13880200490893474.
    31. L. Yang, D. Xian, X. Xiong et. al., Proanthocyanidins against oxidative stress: from molecular mechanisms to clinical applications. Biomed Res Int. (2018). https://doi.org/10.1155/2018/8584136
    32. S. V. Luca, A. Bujor, A. Miron, et. al., Preparative separation and bioactivity of oligomeric proanthocyanidins. Phytochem Rev, 19 (2020)1093–1140.
    33. R. J. Yu, H. B. Liu, Y. Yu et. al., Anticancer activities of proanthocyanidins from the plant Urceola huaitingii and their synergistic effects in combination with chemotherapeutics. Fitoterapia, 112(2016) 175–182
    34. C. J. Guo, J. J. Yang, J. Y. Wei, Y. F Li,. , J. Xu, Y. G. Jiang, Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23 (2003) 1719–1726
    35. F. A. Lahlou, F. Hmimid, M.  Loutfi and N. Bourhim, Antioxidant activity and determination of total phenolic compounds content of Euphorbia regis-jubae (webb and berth) from methanol and aqueous extracts. Int. J. Pure App. Biosci. 2 (3)(2014) 112-117
    36. C. Dini, M. J. Zaro and S. Z. Viña, Bioactivity and Functionality of Anthocyanins, A Review. Current Bioactive Compounds, 15 (5) (2019) 507-523.
    37. 37.           M. B. Rahmani, M. A. B. Sukari, New lignum and other chemical components from haplophyllum villosum and H. leaviusculum and their antioxidant activity. Proceedings of the 16th Malaysian Chemical Congress, (2010), Malaysia 
    38. Y. R. Sohni, P. Kaimal, R. M. Bhatt, The antiamoebic effect of a crude drug formulation of herbal extracts against Entamoeba histolytica in vitro and in vivo. J. Ethnopharmacol., 45 (1) (1995) 43-52
    39. R. D.Vega, M. Gutierrez, C. Sanz, R. Calvo, L. Robredo, C. D. Cuadra, M. Muzquiz, Bactericide-like effect of Lupinus alkaloids. Industrial Crops and Products, 5(2)(1996) 141-148.
    40. T. Schmeller and M. Wink, Utilization of alkaloids in modern medicine. In Alkaloids. M.F. Roberts and M. Wink, eds. New York, Plenum, (1998) 435-459.
    41. J.  Achan, A. O. Talisuna, A. Erhart, A. Yeka, J. K .Tibenderana, F. N. Baliraine. P. J. Rosenthal, U. D'Alessandro, Quinine, an old anti-malaria drug in a modern world: role in the treatment of malaria. Malaria Journal, 10 (2011)144.
    42. A. A. Attia, R. H. ElMazoudy, N. S. El-Shenawy, Antioxidant role of propolis extract against oxidative damage of testicular tissue induced by insecticide chlorpyrifos in rats. Pesticide Biochemistry and Physiology, 103(2)(2012) 87-93.
    43. C. O. D. Frozza, C. C. G. Silvestrin, G. Gambato, O. M. Denize, M. Salvador, F. F. P. Moura, Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food and Chemical Toxicology, 52 (2013) 137-142.
    44. B. Vongsak, S.  Kongkiatpaiboon, S. Jaisamut, S. Machana, C. Pattarapanich, In vitro alpha-glucosidase inhibition and free-radical scavenging activity of propolis from Thai stingless bees in mangosteen orchard. Brazilian Journal of Pharmacognosy, 25(5) (2015) 445-450.
    45. H. Zarate, M. Susana, A. Juárez, M. D. Rosario, C. García, Abel, O. López, César, G. Chávez, A. Josué, S. Garfias, J. D. Jesús Nezahualcóyotl, & A. F. Ramos, Flavonoids, phenolic content, and antioxidant activity of propolis from various areas of Guanajuato. Mexico. Food Science and Technology, 38(2) (2018)210-215. Epub April 16, 2018.https://doi.org/10.1590/fst.29916
    46. T. S. Teixeira, R. C. Vale, R. R. Almeida, T. P. S Ferreira, L. G. L Guimarães, Antioxidant potential and its correlation with the contents of phenolic compounds and flavonoids of methanolic extracts from different medicinal plants. Revista Virtual de Química. 9(4) (2017)1546-1559
    47. M. L. Bittencourt, P. R. Ribeiro, R. L. Franco, H. W. Hilhorst, R. D. de Castro, L. G. Fernandez, Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds. Food Research International, 76 (2015)449 457.
    48. J. K. S Andrade, M. Denadai, C. S. Oliveira, M. L. Nunes, N. Narain, Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Research International, 101 (2017)129-138.
    49. J. K. S, Andrade, M. Denadai, G. R. S Andrade, C. N. Cunha, P. F. Barbosa, M. S.  Jesus, N. Narain, Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food research international, 109(2018)278-287.
    50. A. R. S Sousa, S. Z. C Moraes, A. B. Viana-Junior, E. D. Araujo, Toward a Novel Pharmacology and Therapeutic Understanding of Brazilian Propolis: A Meta-Analytical Approach. Pharmacog Rev. 14(27) (2020)1-7.
    51. F. R. S Corrêa, F. S. Schanuel, A. Moura- N Nunes, J. B. Monte-Alto-Costa, Daleprane. Brazilian red propolis improves cutaneous wound healing suppressing inflammation-associated transcription factor NFκB. Biomedicine and Pharmacotherapy, 86 (2017) 162-171.
    52. L. C. Rufatto, P. Luchtenberg, C. Garcia, C. Thomassigny, S. Bouttier, J. A. P Henriques, S. Moura, Brazilian red propolis: Chemical composition and antibacterial activity determined using bioguided fractionation. Microbiological Research, 214 (2018)74-82.
    53. M. C. Búfalo, I. Ferreira, G. Costa, V. Francisco, J. Liberal, J. M. Sforcin, et. al., Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages. Journal of Ethnopharmacology,149(1)(2013)84-92.
    54. J. M.  Alvarez-Suarez, S. Tulipani, D. Diaz, Y. Estevez, S. Romandini, F. Giampieri, E. Damiani, P. Astolf, S. Bompadre, M. Battino, Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chemical Toxicology, 48 (2010) 2490–2499.