Document Type : Original Research Article

Author

Farabi Research Center, Jam, Bushehr, Iran

Abstract

A flexible polymer based on latex and CdTe Quantum Dots (QDs) is introduced here which shows color changing properties under UV light as the polymer is stretched. After synthesis of TGA-capped CdTe QDs with different sizes and emissions in the optimal conditions, the flexible polymer is synthesized and different colors such as green, pale green, white, and pale red were observed under UV light. The effective parameters of fluorescent QDs such as size, extinction coefficients, and concentrations were calculated by absorption and emission spectra.

Graphical Abstract

Synthesis of a fluorescent mechanochromic polymer based on TGA-capped CdTe Quantum Dots and liquid latex

Keywords

Main Subjects

References

[1]   D. Grbic, S.V. Saenko, T.M. Randriamoria, A. Debry, A.P. Raselimanana, M.C. Milinkovitch, Phylogeography and support vector machine classification of colour variation in panther chameleons, Molecular ecology, 24.13 (2015) 3455-3466. https://doi.org/10.1111/mec.13241.
[2]   J.K. Bowmaker, E.R. Loew, M. Ott, The cone photoreceptors and visual pigments of chameleons. Journal of Comparative Physiology A, 191.10 (2005) 925-932. https://doi.org/10.1007/s00359-005-0014-4.
[3]   D. Prötzel, M. Heß, M. D. Scherz, M. Schwager, A. van’t Padje, F. Glaw, Widespread bone-based fluorescence in chameleons, Scientific reports, 8.1 (2018) 1-9. https://doi.org/10.1038/s41598-017-19070-7.
[4]    D. Stuart-Fox, M.J. Whiting, A. Moussalli, Camouflage and colour change: antipredator responses to bird and snake predators across multiple populations in a dwarf chameleon. Biological Journal of the Linnean Society, 88.3 (2006) 437-446. https://doi.org/10.1111/j.1095-8312.2006.00631.x.
[5]    J. Teyssier, S.V. Saenko, D. Van Der Marel, M.C. Milinkovitch, Photonic crystals cause active colour change in chameleons. Nature communications, 6.1 (2015) 1-7. https://doi.org/10.1038/ncomms7368.
[6]    J.D. Taylor, M.E. Hadley, Chromatophores and color change in the lizard, Anolis carolinensis, Zeitschrift für Zellforschung und Mikroskopische Anatomie, 104.2 (1970) 282-294. https://doi.org/10.1007/BF00309737.
[7]   H. Nilsson Sköld, S. Aspengren, M. Wallin, Rapid color change in fish and amphibians–function, regulation, and emerging applications, Pigment cell & melanoma research, 26.1 (2013) 29-38. https://doi.org/10.1111/pcmr.12040.
[8]    V.P. Chauhan, J.D. Martin, H. Liu, D.A. Lacorre, S.R. Jain, S.V. Kozin, T. Stylianopoulos, A.S. Mousa, X. Han, P. Adstamongkonkul, Z. Popović, Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels, Nature communications, 4.1 (2013) 1-11. https://doi.org/10.1038/ncomms3516.
[9]   C. Weder. Polymers react to stress, Nature, 459.7243 (2009) 45-46. https://doi.org/10.1038/459045a.
[10]           D.R.T. Roberts, S.J. Holder, Mechanochromic systems for the detection of stress, strain and deformation in polymeric materials, Journal of Materials Chemistry, 21.23 (2011) 8256-8268. https://doi.org/10.1039/C0JM04237D.
[11]           J. Kunzelman, B.R. Crenshaw, C. Weder. Self-assembly of chromogenic dyes—a new mechanism for humidity sensors, Journal of Materials Chemistry, 17.29 (2007) 2989-2991. https://doi.org/10.1039/B705880B.
[12]           T. Wen, D.X. Zhang, J. Liu, R. Lin, J. Zhang, A multifunctional helical Cu (I) coordination polymer with mechanochromic, sensing and photocatalytic properties, Chemical Communications, 49.50 (2013) 5660-5662. https://doi.org/10.1039/C3CC42241K.
[13]           Z. Rezayati-Zad, S.S.H. Davarani, A. Taheri and Y. Bide, A yolk shell Fe3O4@PA-Ni@Pd/Chitosan nanocomposite -modified carbon ionic liquid electrode as a new sensor for the sensitive determination of fluconazole in pharmaceutical preparations and biological fluids. Journal of Molecular Liquids,  253 (2018)  233-240. https://doi.org/10.1016/j.molliq.2018.01.019
[14]           Y. Gong, Y. Zhang, W.Z. Yuan, J.Z. Sun, Y. Zhang, D–A solid emitter with crowded and remarkably twisted conformations exhibiting multifunctionality and multicolor mechanochromism, The Journal of Physical Chemistry C, 118.20 (2014) 10998-11005. https://doi.org/10.1021/jp500556p.
[15]           M. Van Horn, P. Smith, B.P. Mason, J.R. Hemmer, J. Read de Alaniz, J.P. Hooper, and S. Osswald, Optical characterization and confocal fluorescence imaging of mechanochromic acrylate polymers, Journal of Applied Physics, 117.4 (2015) 043103. https://doi.org/10.1063/1.4906326.
[16]           C. Calvino, L. Neumann, C. Weder, S. Schrettl, Approaches to polymeric mechanochromic materials, Journal of Polymer Science Part A: Polymer Chemistry, 55.4 (2017) 640-652. https://doi.org/10.1002/pola.28445.
[17]           Y. Sagara, M. Karman, E. Verde-Sesto, K. Matsuo, Y. Kim, N. Tamaoki, C. Weder, Rotaxanes as mechanochromic fluorescent force transducers in polymers, Journal of the American Chemical Society, 140.5 (2018) 1584-1587. https://doi.org/10.1021/jacs.7b12405.
[18]           P.V. Shibaev, D. Chiappetta, R.L. Sanford, P. Palffy-Muhoray, M. Moreira, W. Cao, M.M. Green, Color changing cholesteric polymer films sensitive to amino acids, Macromolecules, 39.12 (2006) 3986-3992. https://doi.org/10.1021/ma052046o.
[19]            M. Mazloum-Ardakani, M. Yavari, A.R. Khoshroo, Effect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells, Journal of Nanostructures. 3.1 (2013) 17-23. http://dx.doi.org/10.7508/jns.2013.01.003.
[20]           M. Masteri-Farahani, K. Khademabbasi, N. Mollatayefeh, R. Schneider, L-and D-cysteine functionalized CdS quantum dots as nanosensors for detection of L-morphine and D-methamphetamine, Journal of Nanostructures, 8.4 (2018) 325-331. https://dx.doi.org/10.22052/JNS.2018.04.001.
[21]           C.C. Chang, Y.D. Sharma, Y.S. Kim, J.A. Bur, R.V. Shenoi, S. Krishna, D. Huang, S.Y. Lin, A surface plasmon enhanced infrared photodetector based on InAs quantum dots, Nano letters, 10.5 (2010) 1704-1709. https://doi.org/10.1021/nl100081j.
[22]           D. Bera, L. Qian, T.K. Tseng, P.H. Holloway, Quantum dots and their multimodal applications: a review. Materials, 3.4 (2010) 2260-2345. https://doi.org/10.3390/ma3042260.
[23]            A. Pucci, G. Ruggeri, Mechanochromic polymer blends. Journal of Materials Chemistry. 21.23 (2011) 8282-8291. https://doi.org/10.1039/C0JM03653F.
[24]           Y. Zhang, G. Wu, F. Liu, C. Ding, Z. Zou, Q. Shen, Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chemical Society Reviews. 49.1 (2020) 49-84. https://doi.org/10.1039/C9CS00560A.
[25]           B. Pourbadiei, R. Pyadar, F. Mansouri, pH-sensitive nanoscale polymers: highly efficient systems for DOX delivery in cancer treatment, J. Nanomed. Res., 5.3 (2017) 1-6. https://doi.org/10.15406/jnmr.2017.05.00114.
[26]           A. Moslehipour, Recent Advances in Fluorescence Detection of Catecholamines. Journal of Chemical Reviews. (2020) 130-147. http://dx.doi.org/10.33945/SAMI/JCR.2020.3.1.
[27]           M.R. Hormozi-Nezhad, A. Moslehipour, A. Bigdeli, Simple and rapid detection of l-dopa based on in situ formation of polylevodopa nanoparticles, Sensors and Actuators B: Chemical, 243 (2017) 715-720. https://doi.org/10.1016/j.snb.2016.12.059.
[28]           A. Moslehipour, A. Bigdeli, F. Ghasemi, M.R. Hormozi-Nezhad, Design of a ratiometric fluorescence nanoprobe to detect plasma levels of levodopa, Microchemical Journal, 148 (2019) 591-596. https://doi.org/10.1016/j.microc.2019.05.041.
[29]           L. van't Hag, S. Handschin, P.M. Gschwend, R. Mezzenga, Light Gold: A Colloidal Approach Using Latex Templates, Advanced Functional Materials, 30.9 (2020) 1908458. https://doi.org/10.1002/adfm.201908458.
[30]           W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15.14 (2003) 2854-2860. https://doi.org/10.1021/cm034081k.