Document Type: Review Article

Authors

1 Department of Chemistry, Sanjivani Arts, Commerce and Science College, Kopargaon 423 603, Savitribai Phule Pune University, Maharashtra, India

2 Department of Chemistry, G.M.D Arts, B.W Commerce and Science College, Sinnar, 422 103, Savitribai Phule Pune University, Maharashtra, India

3 Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner 422 605, Savitribai Phule Pune University, Maharashtra, India

4 Department of Chemistry, K.R.T. Arts, B.H. Commerce and A.M. Science College, Nashik, Savitribai Phule Pune University, Maharashtra, India

10.33945/SAMI/AJCB.2020.3.2

Abstract

Nanotechnology is a swiftly growing field due to its huge range of uses in various branches of science and technology. Divergent types of routes are employed for the production of nanoparticles (NPs) because of their broad applications. The conventional physical and chemical approaches have certain constraints with them either in the form of chemical contaminations during their syntheses methodology or use of higher amount of energy. During the last one or two decades research have been concentrated on creating facile, safe, non-noxious, affordable and eco-accommodating procedures for synthesis of NPs. In order to get this purpose, green synthesis approaches have been improved in order to fill this lacuna. The biogenic synthesis of NPs is facile, one pot, eco-benevolent, sustainable and a green methodology. The different biological specimens like plant tissues, yeast, bacteria, fungi, etc. are used for green synthesis for metal oxide NPs. In this review, we summed up recent literature on biomimetic synthesis of silver oxide (Ag2O) NPs which have revolutionized method of fabrication for their stupendous applications in various sectors. Due to biocompatibility of Ag2O NPs, it has found its efficacious applications in biomedical field. The characterization techniques and mechanism of green synthesis of Ag2O NPs along with diverse applications have also been investigated.

Graphical Abstract

Keywords

Main Subjects

REFERENCES

 

  1.  
  2. S. Matussin, M.H. Harunsani, A.L. Tan, M.M. Khan, Plant-Extract-Mediated SnO2 Nanoparticles: Synthesis and Applications, ACS Sustainable Chemistry & Engineering, 8 (2020) 3040-3054.
  3. M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Cu and Cu-based nanoparticles: synthesis and applications in catalysis, Chem. Rev., 116 (2016) 3722-3811.
  4. S. Ghotekar, A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications, Asian Journal of Green Chemistry, 3 (2019) 187-200.
  5. P. Korde, S. Ghotekar, T. Pagar, S. Pansambal, R. Oza, D. Mane, Plant Extract Assisted Eco-benevolent Synthesis of Selenium Nanoparticles-A Review on Plant Parts Involved, Characterization and Their Recent Applications, J. Chem. Rev., 2 (2020) 157-168.
  6. N. Tarannum, Y.K. Gautam, Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review, RSC Advances, 9 (2019) 34926-34948.
  7. S. Ghotekar, Plant extract mediated biosynthesis of Al2O3 nanoparticles-a review on plant parts involved, characterization and applications, Nanochemistry Research, 4 (2019)163-169.
  8. S. Rajeshkumar, P. Naik, Synthesis and biomedical applications of cerium oxide nanoparticles–a review, Biotech. Rep., 17 (2018) 1-5.
  9. A. Nikam, T. Pagar, S. Ghotekar, K. Pagar, S. Pansambal, A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications, J. Chem. Rev., 1 (2019) 154-163.
  10. T. Pagar, S. Ghotekar, K. Pagar, S. Pansambal, R. Oza, A review on bio-synthesized Co3O4 nanoparticles using plant extracts and their diverse applications, Journal of Chemical Reviews, 1 (2019) 260-270.
  11. R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 112 (2012) 2373-2433.
  12. S. Ghotekar, S. Pansambal, S.P. Pawar, T. Pagar, R. Oza, S. Bangale, Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract, SN Applied Sciences, 1 (2019) 1342.
  13. K. Pagar, S. Ghotekar, T. Paga, A. Nikam, S. Pansambal, R. Oza, D. Sanap, H. Dabhane, Antifungal activity of biosynthesized CuO nanoparticles using leaves extract of Moringa oleifera and their structural characterizations, Asian Journal of Nanosciences and Materials. 3 (2020) 15-23.
  14. M. Nasrollahzadeh, M. Sajjadi, J. Dadashi, H. Ghafuri, Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities, Adv. in Coll. and Inter. Sci., 276 (2020) 102103.
  15. S. Ghotekar, A. Savale, S. Pansambal, Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities, Journal of Water and Environmental Nanotechnology, 3(2018) 95-105.
  16. S.H. Gebre, M.G. Sendeku, New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview, SN Applied Sciences, 1 (2019) 928.
  17. N.M. Ishak, S.K. Kamarudin, S.N. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview, Materials Research Express, 6 (2019) 112004.
  18. D.R. Kamble, S.V. Bangale, S.K. Ghotekar, S.R. Bamane, Efficient synthesis of CeVO4 nanoparticles using combustion route and their antibacterial activity, Journal of Nanostructures, 8 (2018) 144-151.
  19. S. Pansambal, K. Deshmukh, A. Savale, S. Ghotekar, O. Pardeshi, G. Jain, Y, Aher, D. Pore, Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract, Journal of Nanostructures, 7 (2017) 165-174.
  20. S. Pansambal, S. Ghotekar, S. Shewale, K. Deshmukh, N. Barde, P. Bardapurkar, Efficient synthesis of magnetically separable CoFe2O4@SiO2 nanoparticles and its potent catalytic applications for the synthesis of 5-aryl-1, 2, 4-triazolidine-3-thione derivatives, Journal of Water and Environmental Nanotechnology, 4 (2019) 174-186.
  21. A. Savale, S. Ghotekar, S. Pansambal, O. Pardeshi, Green synthesis of fluorescent CdO nanoparticles using Leucaena leucocephala L. extract and their biological activities, J Bacteriol Mycol Open Acess, 5 (2017) 00148.
  22. Y.B. Aher, G.H. Jain, G.E. Patil, A.R. Savale, S.K. Ghotekar, D.M. Pore, S.S. Pansambal, K.K. Deshmukh, Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens, International Journal of Molecular and Clinical Microbiology, 7 (2017) 776-786.
  23. S. Bangale, S. Ghotekar, Bio-fabrication of Silver nanoparticles using Rosa Chinensis L. extract for antibacterial activities, International Journal of Nano Dimension, 10 (2019) 217-224.
  24. S. Ghotekar, S. Pansambal, K. Pagar, O. Pardeshi, R. Oza, Synthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity, Nanochemistry Research, 3 (2018) 189-196.
  25. V. Hoseinpour, N. Ghaemi, Green synthesis of manganese nanoparticles: Applications and future perspective–A review, J. of Photo. and Photobi. B: Bio. 189 (2018) 234-243.
  26. S.K. Ghotekar, S.N. Pande, S.S. Pansambal, D.S. Sanap, K.M. Mahale, B. Sonawane. Biosynthesis of silver nanoparticles using unripe fruit extract of Annona reticulata L. and its characterization, World J. Pharm. and Pharm. Sci., 4 (2015) 1304-1312.
  27. S.K. Ghotekar, P.S. Vaidya, S.N. Pande, S.P. Pawar. Synthesis of silver nanoparticles by using 3-methyl pyrazol 5-one (chemical reduction method) and its characterizations, Int. J. Multidis. Res and Deve., 2 (2015) 419-422.
  28. L. Syedmoradi, M. Daneshpour, M. Alvandipour, F.A. Gomez, H. Hajghassem, K. Omidfar, Point of care testing: The impact of nanotechnology, Biosensors and Bioelectronics, 87 (2017) 373-387.
  29. S. Pansambal, S. Ghotekar, R. Oza, K. Deshmukh, Biosynthesis of CuO nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves and their Catalytic performance for the 5-aryl-1, 2, 4-triazolidine-3-thione derivatives synthesis, Int. J. Sci. Res. Sci. Technol., 5 (2019) 122-128.
  30. S. Pansambal, S. Gavande, S. Ghotekar, R. Oza, K. Deshmukh, Green Synthesis of CuO Nanoparticles using Ziziphus Mauritiana L. Extract and Its Characterizations, Int. J. Sci. Res. in Sci. and Tech., 3 (2017) 1388-1392.
  31. S. Menon, S. Rajeshkumar, V. Kumar, A review on biogenic synthesis of gold nanoparticles, characterization, and its applications, Resource -Efficient Technologies, 3 (2017) 516-527.
  32. M.M. Rahman, S.B. Khan, A. Jamal, M. Faisal, A.M. Asiri, Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method, Microchimica Acta, 178 (2012) 99-106.
  33. X. Zhou, Y. Lu, L.L. Zhai, Y. Zhao, Q. Liu, W.Y. Sun, Propargylamines formed from three-component coupling reactions catalyzed by silver oxide nanoparticles, RSC advances, 3 (2013) 1732-1734.
  34. M. Sangappa, P. Thiagarajan, Combating drug resistant pathogenic bacteria isolated from clinical infections, with silver oxide nanoparticles, Indian journal of pharmaceutical sciences, 77 (2015) 151.
  35. S. Ravichandran, V. Paluri, G. Kumar, K. Loganathan, B.R. Kokati Venkata, A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential, Journal of Experimental Nanoscience, 11 (2016) 445-458.
  36. B.N. Rashmi, S.F. Harlapur, B. Avinash, C.R. Ravikumar, H.P. Nagaswarupa, M.A. Kumar, K. Gurushantha, M.S. Santosh, Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies, Inorganic Chemistry Communications, 111 (2020) 107580.
  37. S. Phongtongpasuk, S. Poadang, N. Yongvanich, Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities, Energy Procedia, 89 (2016) 239-247.
  38. H.H. Ismail, S.A. Hasoon, E.J. Saheb, The anti-Leishmaniasis activity of green synthesis silver oxide nanoparticles, Annals of Tropical Medicine and Health, 22 (2019) 28-38.
  39. R. Li, Z. Chen, N. Ren, Y. Wang, Y. Wang, F. Yu, Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care, Journal of Photochemistry and Photobiology B: Biology, 199 (2019) 111593.
  40. Z.H. Dhoondia, H. Chakraborty, Lactobacillus mediated synthesis of silver oxide nanoparticles, Nanomaterials and nanotechnology, 2 (2012) 15.
  41. S.N. Sharma, R. Srivastava, Silver oxide nanoparticles synthesized by green method from Artocarpus Hetrophyllus for antibacterial and antimicrobial applications, Materials Today: Proceedings, 2020.
  42. https://doi.org/10.1016/j.matpr.2020.02.233
  43. N. Muruganatham, R. Givindharaju, R. Jayaseelan, G. Sundararajan, Green synthesis and characterization of silver oxide nanoparticles using plant extract, J. Appl. Sci. Comp., 6 (2019) 987-1004.
  44. C. Ashokraja, M. Sakar, S. Balakumar, A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles, Materials Research Express, 4 (2017) 105406.
  45. V. Manikandan, P. Velmurugan, J.H. Park, W.S. Chang, Y.J. Park, P. Jayanthi, M. Cho, B.T. Oh, Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens, 3 Biotech., 7 (2017) 72.
  46. A. Shah, S. Haq, W. Rehman, M. Waseem, S. Shoukat, M. ur Rehman, Photocatalytic and antibacterial activities of paeonia emodi mediated silver oxide nanoparticles, Materials Research Express, 6 (2019) 045045.
  47. S. Suresh, G. Pradheesh, V.A. Ramani, Biosynthesis and characterization of CuO, MgO and Ag2O nanoparticles, anti-inflammatory activity and phytochemical screening of the ethanolic extract of the medicinal plant Pavetta indica Linn, Journal of Pharmacognosy and Phytochemistry, 7 (2018) 1984-1990.
  48. Z. Khatun, R.S. Lawrence, M. Jalees, K. Lawerence, Green synthesis and Anti-bacterial activity of Silver Oxide nanoparticles prepared from Pinus longifolia leaves extract, International Journal, 3 (2015) 337-343.
  49. S.O. Aisida, K. Ugwu, A.C. Nwanya, A.K. Bashir, N.U. Nwankwo, I. Ahmed, F.I. Ezema, Biosynthesis of silver oxide nanoparticles using leave extract of Telfairia Occidentalis and its antibacterial activity, Materials Today: Proceedings, 2020. doi.org/10.1016/j.matpr.2020.03.005.
  50. A.K. Mittal, Y, Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnology advances, 31 (2013) 346-356.
  51. Sana SS, Dogiparthi LK. Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Materials Letters. 226 (2018) 47-51.
  52. N. Surma, G. Ijuo and B. Ogoh-Orch, Fuel Gases From Waste High Density Polyethylene (Hdpe) Via Low Temperature Catalytic Pyrolysis. Progress in Chemical and Biochemical Research,  3 (2020)  20-30.
  53. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World journal of nano science and engineering, 2 (2012) 154-160.
  54. T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution, Journal of cleaner production, 83 (2014) 413-419.
  55. Z. Song, J. Hrbek, R. Osgood, Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM, Nano letters, 5 (2005) 1327-1332.
  56. P.C. Nagajyothi, T.V. Sreekanth, C.O. Tettey, Y.I. Jun, S.H. Mook, Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma, Bioorganic & medicinal chemistry letters, 24 (2014) 4298-2303.
  57. P. Rauwel, S. Küünal, S. Ferdov, E. Rauwel, A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM, Advances in Materials Science and Engineering, 2015 2015.
  58. V. Singh, A. Shrivastava, N. Wahi, Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX, African Journal of Biotechnology, 14 (2015) 2554-2567.
  59. S. Venkateswarlu, B.N. Kumar, C.H. Prasad, P. Venkateswarlu, N.V. Jyothi, Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract, Phy. B: Conde. Matt., 449 (2014) 67-71.
  60. M. Stan, I. Lung, M.L. Soran, C. Leostean, A. Popa, M. Stefan, M.D. Lazar, O. Opris, T.D. Silipas, A.S. Porav, Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts, Process Safety and Environmental Protection, 107 (2017) 357-372.
  61. Z.R. Zad, S.S.H. Davarani, A. Taheri and Y. Bide, A yolk shell Fe3O4@PA-Ni@Pd/Chitosan nanocomposite -modified carbon ionic liquid electrode as a new sensor for the sensitive determination of fluconazole in pharmaceutical preparations and biological fluids. Journal of Molecular Liquids, 253 (2018) 233-240.
  62. S. Naraginti, Y. Li, Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa, Journal of Photochemistry and Photobiology B: Biology, 170 (2017) 225-234.
  63. K. Rao, M. Imran, T. Jabri, I. Ali, S. Perveen, S. Ahmed, M.R. Shah, Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM, Carbo. Poly., 174 (2017) 243-252.
  64. B. Das, S.K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, S. Das, S.K. Dey, D. Das, S. Roy, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Arabian Journal of Chemistry, 10 (2017) 862-876.

HOW TO CITE THIS ARTICLE

Suresh Ghotekar, Harshal Dabhane, Shreyas Pansambal, Rajeshwari Oza, Pawan Tambade, Vijay Medhane,A Review on Biomimetic Synthesis of Ag2O Nanoparticles using Plant Extract, Characterization and its Recent Applications, , Ad. J. Chem. B, 2 (2020) 102-111

DOI: 10.33945/SAMI/AJCB.2020.3.2
URL: