Document Type : Original Research Article

Authors

1 Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Young Researchers and Elite Club, Touyserkan Branch, Islamic Azad University, Touyserkan, Iran

3 Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

10.33945/SAMI/AJCB.2020.1.4

Abstract

The interactions between boron carbide (BC) nanocluster of B16C16 and H2O, NO2, CO, and CH4 small molecules were investigated by using density functional theory (DFT) computations to exploit the structural and electronic properties of the adsorbate/cluster complexes. The calculated adsorption energies of the most stable states are -16.6, -0.17, -1.28, -0.18 eV for NO2, CO, H2O, and CH4 molecules, respectively. Meanwhile, the interactions between CO and CH4 molecules and the cluster induce dramatic changes to the cluster electronic properties so that the molecular orbital (HOMO/LUMO) gap of cluster decreased its original value. It was shown that the phenomenon leads to an increment in the electrical conductivity of the cluster at a definite temperature. Furthermore, it is revealed that the adsorptions of NO2 and H2O molecules have no significant effects on the electronic properties of the cluster. Thus, this work suggests that the investigated B16C16 nano-cage could work as a selective gas sensor device towards CO, CH4, NO2 and H2O molecules.

Graphical Abstract

Selective Adsorption Function of B16C16 Nano-Cage for H2O, CO, CH4 and NO2

Keywords

  1. Ghamsari PA, Nouraliei M, Gorgani SS. DFT simulation towards evaluation the molecular structure and properties of the heterogeneous C16Mg8O8 nano–cage as selective nano–sensor for H2 and N2 gases. J. Mol. Graph. Model. 2016;70:163-169.

    1. Fallahpour F, Gorgani SS, Nouraliei M. Boron carbide nanoclusters as H 2 and N 2 gases nanosensors: theoretical investigation. Ind. J. Phys. 2016;90:931-936.
    2. Mirzaei M, Yousefi M, Meskinfam M. Density functional studies of oxygen-terminations versus hydrogen-terminations in carbon and silicon nanotubes. Solid State Sci. 2012;14:874-879.
    3. Golberg D, Bando Y, Stephan O, Kurashima K. Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 1998;73:2441-2443.
    4. Omidvar H, Goodarzi S, Seif A, Azadmehr AR. Influence of anodization parameters on the morphology of TiO2 nanotube arrays. Superlat. Microstruct. 2011;50:26-39.
    5. Jain SK, Srivastava P. Electronic and optical properties of ultrathin single walled boron nanotubes-An ab initio study. Comput. Mater. Sci. 2011;50:3038-3042.
    6. Mirzaei M, Meskinfam M. Computational NMR studies of silicon nanotubes. Comput. Theor. Chem. 2011;978:123-125.
    7. Mirzaei M, Mirzaei M. The B-doped SiC nanotubes: A computational study. J. Mol. Struct. THEOCHEM 2010;953:134-138.
    8. Mirzaei M. Calculation of chemical shielding in C-doped zigzag BN nanotubes. Monatsh. Chem. 2009;140:1275-1278.
    9. Mirzaei M, Hadipour NL, Abolhassani MR. Influence of C-doping on the B-11 and N-14 quadrupole coupling constants in boron-nitride nanotubes: A DFT study. Z. Naturforsch. A 2007;62:56-60.
    10. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A. A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J. Mol. Model. 2012;18:2653-2658.
    11. Seifert G, Hernández E. Theoretical prediction of phosphorus nanotubes. Chem. Phys. Lett. 2000;318:355-360.
    12. Mirzaei M. Carbon doped boron phosphide nanotubes: a computational study. J. Mol. Model. 2011;17:89-96.
    13. Mirzaei M, Meskinfam M. Computational studies of effects of tubular lengths on the NMR properties of pristine and carbon decorated boron phosphide nanotubes. Solid State Sci. 2011;13:1926-1930.
    14. Feldman Y, Wasserman E, Srolovitz DJ, Tenne R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 1995;267:222-225.
    15. Balasubramanian C, Bellucci S, Castrucci P, De Crescenzi M, Bhoraskar SV. Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chem. Phys. Lett. 2004;383:188-1891.
    16. Bourgeois L, Bando Y, Han WQ, Sato T. Structure of boron nitride nanoscale cones: ordered stacking of 240 and 300 disclinations. Phys. Rev. B 2000;61:7686.
    17. Mirzaei M, Hadipour NL, Seif A, Giahi M. Density functional study of zigzag BN nanotubes with equivalent ends. Physica E 2008;40:3060-3063.
    18. Mirzaei M, Mirzaei M. The C-doped AlP nanotubes: A computational study. Solid State Sci. 2011;13:244-250.
    19. Mirzaei M. A computational NMR study of boron phosphide nanotubes. Z. Naturforsch. A 2010;65:844-848.
    20. Paine RT, Narula CK. Synthetic routes to boron nitride. Chem. Rev. 1990;90:73-91.
    21. Deepak FL, Tenne R. Gas-phase synthesis of inorganic fullerene-like structures and inorganic nanotubes. Cent. Eur. J. Chem. 2008;6:373-389.
    22. Ozkendir, O., Gunaydin, S., Mirzaei, M. Electronic structure study of the LiBC3 borocarbide graphene material. Adv. J. Chem. B 2019;1:37-41.
    23. Zhuiykov S, Wlodarski W, Li Y. Nanocrystalline V2O5–TiO2 thin-films for oxygen sensing prepared by sol–gel process. Sens. Actuat. B 2001;77:484-890.
    24. Chang H, Lee JD, Lee SM, Lee YH. Adsorption of NH 3 and NO2 molecules on carbon nanotubes. Appl. Phys. Lett. 2001;79:3863-3865.
    25. Lu J, Nagase S, Maeda Y, Wakahara T, Nakahodo T, Akasaka T, Yu D, Gao Z, Han R, Ye H. Adsorption configuration of NH3 on single-wall carbon nanotubes. Chem. Phys. Lett. 2005;405:90-92.
    26. Rostami Z, Maskanati M, Khanahmadzadeh S, Dodangi M, Nouraliei M. Interaction of nitrotyrosine with aluminum nitride nanostructures: A density functional

             approach. Physica E 2020;116:113735.

    1. Santucci S, Picozzi S, Di Gregorio F, Lozzi L, Cantalini C, Valentini L, Kenny JM, Delley B. NO 2 and CO gas adsorption on carbon nanotubes: experiment and theory. J. Chem. Phys. 2003;119:10904-10910.
    2. Byl O, Liu JC, Wang Y, Yim WL, Johnson JK, Yates JT. Unusual hydrogen bonding in water-filled carbon nanotubes. J. Am. Chem. Soc. 2006;128:12090-12097.
    3. Maniwa Y, Matsuda K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y, Kataura H. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nature Mater. 2007;6:135-141.
    4. Takaiwa D, Hatano I, Koga K, Tanaka H. Phase diagram of water in carbon nanotubes. Proc. Nat. Acad. Sci. 2008;105:39-43.
    5. Ariaei, S. Adsorptions of diatomic gaseous molecules (H2, N2 and CO) on the surface of Li+@C16B8P8 fullerene-like nanostructure: computational studies. Adv. J. Chem. B 2019;1:29-36.
    6. Ellison MD, Good AP, Kinnaman CS, Padgett NE. Interaction of water with single-walled carbon nanotubes: Reaction and adsorption. J. Phys. Chem. B 2005;109:10640-10646.
    7. Zangi R. Water confined to a slab geometry: a review of recent computer simulation studies. J. Phys. 2004;16:5371-5381.
    8. Gelb LD, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M. Phase separation in confined systems. Rep. Prog. Phys. 1999;62:1573-1659.
    9. Müller-Dethlefs K, Hobza P. Noncovalent interactions: a challenge for experiment and theory. Chem. Rev. 2000;100:143-168.
    10. Ugalde JM, Alkorta I, Elguero J. Water clusters: Towards an understanding based on first principles of their static and dynamic properties. Angew. Chem. 2000;39:717-721.
    11. O'boyle NM, Tenderholt AL, Langner KM. Cclib: a library for package‐independent computational chemistry algorithms. J. Comput. Chem. 2008;29:839-845.
    12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H. Gaussian09 Revision D. 01, Gaussian Inc. Wallingford CT.; 2009.
    13. Bodaghi A, Mirzaei M, Seif A, Giahi M. A computational NMR study on zigzag aluminum nitride nanotubes. Physica E 2008;41:209-212.
    14. Mirzaei M. Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int. J. Nano Dimen. 2013;3:175-179.
    15. Mirzaei M. The NMR parameters of the SiC-doped BN nanotubes: a DFT study. Physica E 2010;42:1954-1957.
    16. Nouri A, Mirzaei M. DFT calculations of B-11 and N-15 NMR parameters in BN nanocone. J. Mol. Struct. THEOCHEM 2009;913:207-209.
    17. Mirzaei M, Mirzaei M. An electronic structure study of O-terminated zigzag BN nanotubes: Density functional calculations of the quadrupole coupling constants. Solid State Commun. 2010;150:1238-1240.
    18. Ozkendir, O., Mirzaei, M. Alkali Metal Chelation by 3–Hydroxy–4–Pyridinone. Adv. J. Chem. B 2019;1:10-16.
    19. Mirzaei M, Yousefi M. Computational studies of the purine-functionalized graphene sheets. Superlat. Microstruct. 2012;52:612-617.
    20. Bagheri Z, Mirzaei M, Hadipour NL, Abolhassani MR. Density functional theory study of boron nitride nanotubes: calculations of the N-14 and B-11 nuclear quadrupole resonance parameters. J. Comput. Theor. Nanosci. 2008;5:614-618.
    21. Mirzaei M, Yousefi M, Meskinfam M. Studying (n, 0) and (m, m) GaP nanotubes (n= 3–10 and m= 2–6) through DFT calculations of Ga-69 quadrupole coupling constants. Solid State Sci. 2012;14:801-804.
    22. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88:899-926.
    23. Li SS. Semiconductor physical electronics. Springer Science & Business Media; 2012.