Document Type : Review Article


1 College of Pharmacy,Yonsei University, Yeonsu-gu,Incheon, Republic of Korea

2 College of Pharmacy, Gachon University, Yeonsu–gu,Incheon, Republic of Korea



This review aims to provide overall aspects of the history, biology, chemistry and the total synthesis of Aflavinines.  The origin of this molecule traced back from the isolation and structural elucidation by Clardy and co–workers in 1980 [Tetrahed. Lett. 1980;21:243–246]. Most of the previously published total syntheses were covered in a brief summary and the key points of each work are highlighted. Moreover, various antiinsectant and antiviral Aflavinines congener are presented. This review is almost the first in Aflavinine topics covering all aspects in brief, to the best of our knowledge.

Graphical Abstract

Aflavinines: History, Biology and Total Synthesis


  1. Gallagher RT, McCabe T, Hirotsu K, Clardy J, Nicholson J, Wilson BJ. Aflavinine, a novel indole–mevalonate metabolite from tremorgen–producing aspergillusflavus species. Tetrahed. Lett. 1980;21:243–246.
  2. Wicklow DT. Role of fungal sclerotia in the epidemiology of aspergillus flavus in maize. JSM Mycotox. 1988;1988:155–158.
  3. Gloer JB, TePaske MR, Sima JS, Wicklow DT, Dowd PF. Antiinsectan aflavinine derivatives from the sclerotia of aspergillus flavus. J. Org. Chem. 1988;53:5457–5460.
  4. TePaske MR, Gloer JB, Wicklow DT, Dowd PF. Aflavazole: a new antiinsectan carbazole metabolite from the sclerotia of aspergillus flavus. J. Org. Chem. 1990;55:5299–5301.
  5. Gloer JB. Antiinsectan natural products from fungal sclerotia. Acc. Chem. Res. 1995;28:343–350.
  6. TePaske MR, Gloer JB, Wicklow DT, Dowd PF. Aflavarin and β–Aflatrem: new anti–insectan metabolites from the sclerotia of aspergillus flavus. J. Nat. Prod. 1992;55:1080–1086.
  7. Wang H–J, Gloer JB, Wicklow DT, Dowd PF. Aflavinine s and other antiinsectan metabolites from the ascostromata of eupenicillium crustaceum and related species. Appl. Environ. Microbiol. 1995;61:4429–4435.
  8. Gloer JB, Rinderknecht BL, Wicklow DT, Dowd PF. Nominine: a new insecticidal indole diterpene from the sclerotia of aspergillus nomius. J. Org. Chem. 1989;54:2530–2532.
  9. TePaske MR, Gloer JB, Wicklow DT, Dowd PF. Tubingensin A: an antiviral carbazole alkaloid from the sclerotia of aspergillus tubingensis. J. Org. Chem. 1989;54:4743–4746.
  10. TePaske MR, Gloer JB, Wicklow DT, Dowd PF. Three new aflavinines from the sclerotia of Aspergillus tubingensis. Tetrahed. 1989;45:4961–4968.
  11. Nakadate S, Nozawa K, Horie H. New type indole diterpene, eujindoles, from eupenicillium javanicum. Heterocycl. 2011;83:351–356.
  12. Nakadate S, Nozawa K, Yaguchi T. Two new eujindoles from Eupenicillium javanicum. Nat. Prod. Update. 2011;83:1867–1871.
  13. Nozawa K, Sekita S, Harada M, Udagawa S, Kawai K. Isolation and structures of two new indoloditerpenes related to aflavinine from a microsclerotium–producing strain of aspergillus flavus. Chem. Pharm. Bull. 1989;37:626–630.
  14. TePaske MR, Gloer JB, Wicklow DT, Dowd PF. The structure of tubingensin B: A cytotoxic carbazole alkaloid from the sclerotia of aspergillustubingensis. Tetrahed. Lett. 1989;30:5965–5968.
  15. Wicklow D, Dowd P, Gloer J. Antiinsectan effects of aspergillus metabolites. The genus Aspergillus. Springer; 1994. p. 93–114.
  16. Laakso JA, TePaske MR, Dowd PF, Gloer JB, Wicklow DT, Staub GM. Indole antiinsectan metabolites. Google Patents; 1993.
  17. Brase S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 2009;109:3903–3990.
  18. Rank C, Klejnstrup ML, Petersen LM, Kildgaard S, Frisvad JC, Held Gotfredsen C, et al. Comparative chemistry of aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabol. 2012;2:39–56.
  19. Abu El–Souod S, Awadalla OA, Assawah SMW, Mahmoud YA–G, El–Debaiky SAE–K. Studies on the sclerotia of some species in the genus aspergillus. Egypt. J. Botan. 2017;57:395–404.
  20. Cary JW, Gilbert MK, Lebar MD, Majumdar R, Calvo AM. Aspergillus flavus secondary metabolites: More than just aflatoxins. Food Safety 2018;6:7–32.
  21. Uka V, Moore GG, Arroyo–Manzanares N, Nebija D, De

         Saeger SMDG, Diana Di Mavungu J. Secondary metabolite dereplication and phylogenetic analysis identify various emerging mycotoxins and reveal the high intra–species diversity in aspergillus flavus. Front. Microbiol. 2019;10:667.

  1. Danishefsky S, Chackalamannil S, Harrison P, Silvestri M. Synthetic studies toward Aflavinine : a synthesis of 3–demethylAflavinine   via a [2+ 2+ 2] annulation. J. Am. Chem. Soc. 1985;107:2474–2484.
  2. Danishefsky S, Harrison P, Silvestri M, Segmuller B. A notable stereochemical variation in the 2+ 2+ 2 annulation reaction. J. Org. Chem. 1984;49:1319–1321.
  3. Danishefsky S, Chackalamannil S, Silvestri M, Springer J. Stereospecific 2+ 2+ 2 annulation. J. Org. Chem. 1983;48:3615–3616.
  4. Lu Z, Li H, Bian M, Li A. Total synthesis of epoxyeujindole A. J. Am. Chem. Soc. 2015;137:13764–13767.
  5. Li H, Chen Q, Lu Z, Li A. Total syntheses of aflavazole and 14–hydroxyAflavinine. J. Am. Chem. Soc. 2016;138(48):15555–8.
  6. Lodge EP. Experimental and theoretical studies in 1,2–asymmetric induction: feasibility of a proposed synthesis of aflavinine. University of California, Berkeley; 1988.
  7. Herrmann P. Synthetic studies directed toward nitropolyzonamine, aflavinine, and a rigid HMG CoA reductase inhibitor. 1995; url:
  8. Bradshaw B, Etxebarria–Jardí G, Bonjoch J. Total synthesis of (−)–anominine. J. Am. Chem. Soc. 2010;132:5966–5967.
  9. Bian M, Wang Z, Xiong X, Sun Y, Matera C, Nicolaou K, et al. Total syntheses of anominine and tubingensin A. J. Am. Chem. Soc. 2012;134:8078–8081.
  10. Goldberg DR, Hansen JA, Giguere RJ. The tandem intramolecular Diels–Alder reaction. Tetrahed. Lett. 1993;34:8003–8006.
  11. Jo M, Lee D, Kwak YS. Rapid access to the structural core of aflavinines via stereoselective tandem intramolecular Diels–Alder cycloaddition controlled by the allylic 1,3–strain. Org. Lett. 2019;21:6529–6533.